Invited Review: Advantages of current and future reproductive technologies for beef cattle production1,2


      The refinement of current and development of new technologies aimed at increasing the productivity of resources while minimizing the environmental impact will be critical to meet the global food demand in the near future. During the past 50 yr, assisted reproductive technologies have been developed and refined to increase the prolificacy and quality of calves from beef females. Artificial insemination, estrus synchronization and fixed-time AI, semen and embryo cryopreservation, multiple ovulation and embryo transfer, in vitro fertilization, sex determination of sperm or embryos, and nuclear transfer are technologies that are used to enhance the production efficiency of beef systems. Development and implementation of these technologies are responsible for significant changes to world production of beef. Sales of beef semen for AI increased from 3.3 to 13.0 million units between 1993 and 2010 in Brazil, whereas that in the United States has increased from 2.9 to 4.4 million units during the same period. This increase is likely a result of the development of practical fixed-time AI systems that have allowed beef producers the opportunity to eliminate detection of estrus in their AI programs with a high degree of success. Similarly, the quantity of in vivo–produced embryos transferred worldwide has increased from 361,000 in 1997 to 506,000 in 2012. In addition, during the last 15 yr the transfer of in vitro–produced embryos has increased more than 300%. Incorporating applied reproductive technologies continues to effect beef cattle production systems by providing producers opportunities to enhance genetics, reduce transfer of disease, advance fertility, and ultimately increase offspring value. Improvements in fertility and technology, reductions in cost, and improvements in ease of application will ensure that more cattle producers will adopt applied reproductive technologies in future years. However, incorporation of applied reproductive technologies into production systems will vary worldwide depending on cattle markets, infrastructure, production systems, and climate.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Agca Y.
        • Critser J.K.
        Cryopreservation of spermatozoa in assisted reproduction.
        Semin. Reprod. Med. 2002; 20: 15-23
        • Amatayakul-Chantler S.
        • Jackson J.A.
        • Stenger J.
        • King V.
        • Rubio L.M.S.
        • Howard R.
        • Lopez E.
        • Walker J.
        Immunocastration of Bos indicus × Brown Swiss bulls in feedlot with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality.
        J. Anim. Sci. 2012; 90: 3718-3728
        • Anderson K.J.
        • Lefever D.G.
        • Brinks J.S.
        • Odde K.G.
        The use of reproductive tract scoring in beef heifers.
        Agri-Practice. 1991; 12: 19-26
      1. (Animal and Plant Health Inspection Service), Veterinary Services, Centers for Epidemiology and Animal Health.
        in: Importance of pre-arrival management practices to operators of U.S. feedlots. Info Sheet: Safeguarding American Agriculture. 2012 (Accessed Jul. 1, 2015)
        • Betteridge K.J.
        Farm animal embryo technologies: achievements and perspectives.
        Theriogenology. 2006; 65: 905-913
      2. Betz, G. C. M. 2007. Using the rate of genetic change and the population structure of cattle to better target genetic progress. Pages 103–109 in Proc. 39th Beef Imp. Fed. Symp. Fort Collins, CO. Colorado State Univ., Fort Collins.

        • Byerley D.J.
        • Staigmiller R.B.
        • Berardinelli J.G.
        • Short R.E.
        Pregnancy rates of beef heifers bred either on puberal or third estrus.
        J. Anim. Sci. 1987; 65: 645-650
        • Calkins C.R.
        • Clanton D.C.
        • Berg T.J.
        • Kinder J.E.
        Growth, carcass and palatability traits of intact males and steers implanted with zeranol or estradiol early and throughout life.
        J. Anim. Sci. 1986; 62: 625-631
        • Carroll F.D.
        • Rollins W.C.
        • Wagnon K.A.
        • Loy R.G.
        Comparison of beef from bulls and DES implanted steers.
        J. Anim. Sci. 1975; 41: 1008-1013
        • Chenoweth P.J.
        Bull libido/serving capacity.
        Vet. Clin. North Am. Food Anim. Pract. 1997; 13: 331-344
      3. Dahlen, C. R., J. E. Larson, and G. C. Lamb. 2013. Impacts of reproductive technologies on beef production in the United States. Pages 97–114 in Current and Future Reproductive Technologies and World Food Production, Advances in Experimental Medicine and Biology. Vol. 752. Springer Publ. Co., New York, NY.

        • Davis M.E.
        • Rutledge J.J.
        • Cundiff L.V.
        • Hauser E.R.
        Life cycle efficiency of beef production: II. Relationship of cow efficiency ratios to traits of the dam and progeny weaned.
        J. Anim. Sci. 1983; 57: 852-866
        • Dejarnette J.M.
        • Leach M.A.
        • Nebel R.L.
        • Marshall C.E.
        • Cleary C.R.
        • Moreno J.F.
        Effects of sex sorting and sperm dosage on conception rates of Holstein heifers: Is comparable fertility of sex sorted and conventional semen plausible?.
        J. Dairy Sci. 2011; 94: 3477-3483
        • Dematawewa C.M.
        • Berger P.J.
        Break-even cost of cloning in genetic improvement of dairy cattle.
        J. Dairy Sci. 1998; 81: 1136-1147
        • Dickerson G.E.
        Animal size and efficiency: Basic concepts.
        Anim. Prod. 1978; 27: 367-379
      4. Drake, D. J., K. L. Weber, and A. L. Van Eenennaam. 2011. What are herd bulls accomplishing in multiple sire breeding pastures? Pages 305–319 in Proc. Appl. Reprod. Strat. Beef Cattle, Joplin, MO. Univ. Missouri, Columbia.

        • Dziuk P.J.
        • Bellows R.A.
        Management of reproduction in beef cattle, sheep and pigs.
        J. Anim. Sci. 1983; 57: 355-379
        • Farin P.W.
        • Chenoweth P.J.
        • Tomky D.F.
        • Ball L.
        • Pexton J.E.
        Breeding soundness, libido and performance of beef bulls mated to estrus synchronized females.
        Theriogenology. 1989; 32: 717-725
      5. Food and Agriculture Organization. 2009. How to Feed the World in 2050. Insights from an Expert Meeting at FAO. Pages 1–35. Food Agric. Org., Rome, Italy.

        • Foote R.H.
        The history of artificial insemination: selected Notes and notables.
        J. Anim. Sci. 2002; 80: 1-10
        • Galli C.
        • Duchi R.
        • Crotti G.
        • Turini P.
        • Ponderato N.
        • Colleoni S.
        • Laqutina I.
        • Lazzari G.
        Bovine embryo technologies.
        Theriogenology. 2003; 59: 599-616
        • Galyean M.L.
        • Ponce C.
        • Schutz J.
        The future of beef production in North America.
        Anim. Front. 2011; 1: 29-36
        • Garber M.J.
        • Roeder R.A.
        • Combs J.J.
        • Eldridge L.
        • Miller J.C.
        • Hinman D.D.
        • Ney J.J.
        Efficiency of vaginal spaying and anabolic implants on growth and carcass characteristics in beef heifers.
        J. Anim. Sci. 1990; 68: 1469-1475
        • Grings E.E.
        • Short R.E.
        • Klement K.D.
        • Geary T.W.
        • MacNeil M.D.
        • Haferkamp M.R.
        • Heitschmidt R.K.
        Calving system and weaning age effects on cow and preweaning calf performance in the Northern Great Plains.
        J. Anim. Sci. 2005; 83: 2671-2683
      6. Hansen, P. J. 2013. Current and future assisted reproductive technologies for mammalian farm animals. Pages 1–22 in Current and Future Reproductive Technologies and World Food Production, Advances in Experimental Medicine and Biology. Vol. 752. Springer Publ. Co., New York, NY.

        • Harris D.L.
        • Newman S.
        Breeding for profit: Synergism between genetic improvement and livestock production: A review.
        J. Anim. Sci. 1994; 72: 2178-2200
        • Hasler J.F.
        The current status and future of commercial embryo transfer in cattle.
        Anim. Reprod. Sci. 2003; 79: 245-264
        • Herrmann B.G.
        • Koschorz B.
        • Wertz K.
        • McLaughlin K.J.
        • Kispert A.
        A protein kinase encoded by the t complex responder gene causes non-Mendelian inheritance.
        Nature. 1999; 402: 141-146
        • Holm D.E.
        • Thompson P.N.
        • Irons P.C.
        The value of reproductive tract scoring as a predictor of fertility and production outcomes in beef heifers.
        J. Anim. Sci. 2009; 87: 1934-1940
        • Honaramooz A.
        • Behboodi E.
        • Megee S.O.
        • Overton S.A.
        • Galantino-Homer H.
        • Echelard Y.
        • Dobrinski I.
        Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats.
        Biol. Reprod. 2003; 69: 1260-1264
        • Janett F.
        • Gerig T.
        • Tschuor A.C.
        • Amatayakul-Chantler S.
        • Walker J.
        • Howard R.
        • Bollwein H.
        • Thun R.
        Vaccination against gonadotropin-releasing factor (GnRF) with Bopriva significantly decreases testicular development, serum testosterone levels, and physical activity in pubertal bulls.
        Theriogenology. 2012; 78: 182-188
        • Jim G.K.
        • Ribble C.S.
        • Guichon P.T.
        • Thorlakson B.E.
        The relative economics of feeding open, aborted, pregnant feedlot heifers.
        Can. Vet. J. 1991; 32: 613-617
        • Johnson S.K.
        Possibilities with today’s reproductive technologies.
        Theriogenology. 2005; 64: 639-656
        • Johnson S.K.
        • Funston R.N.
        • Hall J.B.
        • Kesler D.J.
        • Lamb G.C.
        • Lauderdale J.W.
        • Patterson D.J.
        • Perry G.A.
        • Strohbehn D.R.
        Multi-state Beef Reproduction Task Force provides science-based recommendations for the application of reproductive technologies.
        J. Anim. Sci. 2011; 89: 2950-2954
        • Lamb G.C.
        • Dahlen C.R.
        • Brown D.R.
        Symposium paper: Reproductive ultrasonography for monitoring ovarian structure development, fetal development, embryo survival, and twins in beef cows.
        Prof. Anim. Sci. 2003; 19: 135-143
        • Lamb G.C.
        • Larson J.E.
        • Geary T.W.
        • Stevenson J.S.
        • Johnson S.K.
        • Day M.L.
        • Ansotegui R.P.
        • Kesler D.L.
        • DeJarnette J.M.
        • Landblom D.G.
        Synchronization of estrus and artificial insemination of replacement beef heifers using gonadotropin-releasing hormone, prostaglandin F, and progesterone.
        J. Anim. Sci. 2006; 84: 3000-3009
        • Lamb G.C.
        • Stevenson J.S.
        • Kesler D.J.
        • Garverick H.A.
        • Brown D.R.
        • Salfen B.E.
        Inclusion of an intravaginal progesterone insert plus GnRH and prostaglandin F for ovulation control in postpartum suckled beef cows.
        J. Anim. Sci. 2001; 79: 2253-2259
        • Larson J.E.
        • Lamb G.C.
        • Stevenson J.S.
        • Johnson S.K.
        • Day M.L.
        • Geary T.W.
        • Kesler D.J.
        • DeJarnette J.M.
        • Schrick F.N.
        • DiCostanzo A.
        • Arseneau J.D.
        Synchronization of estrus in suckled beef cows before detected estrus and artificial insemination and timed artificial insemination using gonadotropin-releasing hormone, prostaglandin F, and progesterone.
        J. Anim. Sci. 2006; 84: 332-342
        • Lauderdale J.W.
        ASAS Centennial Paper: Contributions in the Journal of Animal Science to the development of protocols for breeding management of cattle through synchronization of estrus and ovulation.
        J. Anim. Sci. 2009; 87: 801-812
        • Laudert S.B.
        Incidence of pregnancy in feedlot heifers at slaughter.
        Kansas Agric. Exp. Stn. Rep. Progr. 1988; 539: 112
      7. Leupp, J. L., G. P. Lardy, R. Daly, C. L. Wright, and J. A. Paterson. 2008. Factors influencing price of North Dakota, South Dakota and Montana feeder calves. Pages 46–49 in NDSU Beef Cattle and Range Research Report. North Dakota State Univ., Fargo.

      8. Magee, D. 2005. Breeding soundness evaluation of bulls. In Proc. Appl. Reprod. Strat. Beef Cattle, College Station, TX. Accessed July 8, 2015.

        • McAfee A.J.
        • McSorley E.M.
        • Cuskelly G.J.
        • Moss B.W.
        • Wallace J.M.W.
        • Bonham M.P.
        • Fearon A.M.
        Red meat consumption: An overview of the risks and benefits.
        Meat Sci. 2010; 84: 1-13
        • Moseley W.M.
        • Meeuwse D.M.
        • Boucher J.F.
        • Dame K.J.
        • Lauderdale J.W.
        A dose-response study of melengestrol acetate on feedlot performance and carcass characteristics of beef steers.
        J. Anim. Sci. 2003; 81: 2699-2703
      9. NAHMS. 2000. Part I: Baseline reference of feedlot management practices, 1999. Pages 46–47. Natl. Anim. Health Monit. Serv., Fort Collins, CO.

      10. NAHMS. 2008. Part I. Reference of beef cow-calf management practices in the United States, 2007–08. Pages 37–40. Natl. Anim. Health Monit. Serv., Fort Collins, CO.

      11. NAHMS. 2009a. Part II. Reference of beef cow-calf management practices in the United States, 2007–08. Pages 5–23. Natl. Anim. Health Monit. Serv., Fort Collins, CO.

      12. NAHMS. 2009b. Part IV. Reference of dairy cattle health and management practices in the United States, 2007–08. Page 27. Natl. Anim. Health Monit. Serv., Fort Collins, CO.

        • Oback B.
        Climbing mount efficiency—Small steps, not giant leaps towards higher cloning success in farm animals.
        Reprod. Domest. Anim. 2008; 43: 407-416
        • Palasz A.T.
        • Mapletoft R.J.
        Cryopreservation of mammalian embryos and oocytes: Recent advances.
        Biotechnol. Adv. 1996; 14: 127-149
        • Parcell J.L.
        • Dhuyvetter K.C.
        • Patterson D.J.
        • Randle R.
        The value of heifer and calf characteristics in bred heifer price.
        Prof. Anim. Sci. 2006; 22: 217-224
        • Patterson D.J.
        • Wood S.L.
        • Randle R.F.
        Heifer programs that add value to the beef industry: Procedures that support reproductive management of replacement beef heifers.
        J. Anim. Sci. 2000; 77: 1-15
        • Pruzzo L.
        • Cantet R.J.C.
        • Fioretti C.C.
        Risk-adjusted expected returns for selection decisions.
        J. Anim. Sci. 2003; 81: 2984-2988
        • Rodgers J.C.
        • Bird S.L.
        • Larson J.E.
        • DiLorenzo N.
        • Dahlen C.R.
        • DiCostanzo A.
        • Lamb G.C.
        An economic evaluation of estrous synchronization and timed artificial insemination in suckled beef cows.
        J. Anim. Sci. 2012; 90: 4055-4062
        • Rodriguez-Osorio N.
        • Urrego R.
        • Cibelli J.B.
        • Eilertsen K.
        • Memili E.
        Reprogramming mammalian somatic cells.
        Theriogenology. 2012; 78: 1869-1886
        • Scanga J.A.
        • Belk K.E.
        • Tatum J.D.
        • Grandin T.
        • Smith G.C.
        Factors contributing to the incidence of dark cutting beef.
        J. Anim. Sci. 1998; 76: 2040-2047
        • Seeger J.T.
        • King M.E.
        • Grotelueschen D.S.
        • Rogers G.M.
        • Stokka G.S.
        Effect of management, marketing, and certified health programs on the sale price of beef calves sold through livestock video auction service from 1995 through 2009.
        J. Am. Vet. Med. Assoc. 2011; 239: 451-466
      13. Seidel, G. E., Jr. 2013. Beef cattle in the year 2050. Pages 239–244 in Current and Future Reproductive Technologies and World Food Production, Advances in Experimental Medicine and Biology. Vol. 752. Springer Publ. Co., New York, NY.

        • Sprott L.R.
        Management and financial considerations affected the decision to synchronize estrus in beef females.
        J. Anim. Sci. 1999; 77: 1-10
        • Stevenson J.S.
        • Lamb G.C.
        • Johnson S.K.
        • Medina-Britos M.A.
        • Grieger D.M.
        • Harmoney K.R.
        • Cartmill J.A.
        • El-Zarkouny S.Z.
        • Dahlen C.R.
        • Marple T.J.
        Supplemental norgestomet, progesterone, or melengestrol acetate increases pregnancy rates in suckled beef cows after timed inseminations.
        J. Anim. Sci. 2003; 81: 571-586
        • Stockwell S.
        • Herrid M.
        • Davey R.
        • Brownlee A.
        • Hutton K.
        • Hill J.R.
        Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle.
        Reprod. Fertil. Dev. 2009; 21: 462-468
        • Thompson I.M.
        • Derri R.L.
        • Kim I.H.
        • Green J.A.
        • Santos J.E.
        • Thatcher W.W.
        Effects of resynchronization programs on pregnancy per artificial insemination, progesterone, and pregnancy-associated glycoproteins in plasma of lactating dairy cows.
        J. Dairy Sci. 2010; 93: 4006-4018
        • Thompson K.E.
        • Stevenson J.S.
        • Lamb G.C.
        • Grieger D.M.
        • Löest C.A.
        Follicular, hormonal, and pregnancy responses of early postpartum suckled beef cows to GnRH, norgestomet, and PGF.
        J. Anim. Sci. 1999; 77: 1823-1832
        • Worrell M.A.
        • Clanton D.C.
        • Calkins C.R.
        Effect of weight at castration on steer performance on the feedlot.
        J. Anim. Sci. 1987; 64: 343-347