Advertisement

Invited Review: Ruminal microbes, microbial products, and systemic inflammation1,2

      ABSTRACT

      The ruminal ecosystem is inhabited by complex communities of microbes that include bacteria, protozoa, archaea, fungi, and viruses. The immune system of the animal has evolved to maintain tolerance to innocuous gut commensals and allow the induction of protective responses to pathogens. However, ruminal microbes can also promote local and systemic inflammation. The ruminal epithelium–vascular interface allows absorption of fermentation products and also serves as a selective barrier to prevent translocation and systemic dissemination of bacteria, bacterial toxins, and immunogenic factors. Ruminal dysbiosis that increases ruminal acidity and osmolarity may increase permeability and even induce a breach in the integrity of the epithelial and vascular endothelial barriers, thus facilitating entry of bacteria or bacterial antigens into the portal vein. Upon reaching the liver, bacteria and their products can cause local inflammation and alter function of the organ; if they manage to bypass the liver, they can cause systemic inflammation and affect other organs. Shifts in microbial populations associated with dysbiosis result in increases in concentrations of potentially toxic and inflammatory substances that include lipopolysaccharides, lipoteichoic acids, and leukotoxins, among others. Lipopolysaccharides are constituents of all gram-negative bacteria, which are the dominant ruminal microbes. The entry of lipopolysaccharides into the systemic circulation, either from the rumen or lower gut, could trigger the release of proinflammatory cytokines, reactive oxygen and nitrogen intermediates, and bioactive lipids. An activated immune system drastically increases its demand for nutrients; however, the nutritional requirements of an activated immune system in the context of systemic physiology are still unknown. In conclusion, ruminal microbes and their products generate many complex interactions with the host immune system, and dysbiosis has the potential to induce systemic inflammation. Although inflammation is generally a protective reaction, the persistence of inflammatory mediators could have negative consequences for the host.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Amachawadi R.
        • Nagaraja T.
        Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle.
        27136021
        J. Anim. Sci. 2016; 94: 1620-1632
        • Amachawadi R.G.
        • Purvis T.J.
        • Lubbers B.V.
        • Homm J.W.
        • Maxwell C.L.
        • Nagaraja T.G.
        Bacterial flora of liver abscesses in crossbred beef cattle and Holstein steers fed finishing diets with or without tylosin.
        28805921
        J. Anim. Sci. 2017; 95: 3425-3434
        • Ametaj B.N.
        • Zebeli Q.
        • Iqbal S.
        Nutrition, microbiota, and endotoxin-related diseases in dairy cows.
        Rev. Bras. Zootec. 2010; 39: 433-444
        • Amoako K.K.
        • Goto Y.
        • Shinjo T.
        Comparison of extracellular enzymes of Fusobacterium necrophorum ssp. necrophorum and Fusobacterium necrophorum ssp. funduliforme.
        8370761
        J. Clin. Microbiol. 1993; 31: 2244-2247
        • Anas A.
        • Wiersinga W.
        • de Vos A.
        • Van der Poll T.
        Recent insights into the pathogenesis of bacterial sepsis.
        20421654
        Neth. J. Med. 2010; 68: 147-152
        • Andersen P.
        • Hesselholt M.
        • Jarløv N.
        Endotoxin and arachidonic acid metabolites in portal, hepatic and arterial blood of cattle with acute ruminal acidosis.
        7847191
        Acta Vet. Scand. 1994; 35: 223-234
        • Anderson S.D.
        Endotoxic and anaphylactic-type shock in steers from intravenous injection of Escherichia coli endotoxin and ruminal absorption of endotoxin.
        1984 (MS Thesis. Kansas State Univ., Manhattan)
        • Artis D.
        Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut.
        18469830
        Nat. Rev. Immunol. 2008; 8: 411-420
        • Baldwin R.
        • McLeod K.
        • Capuco A.
        Visceral tissue growth and proliferation during the bovine lactation cycle.
        15375059
        J. Dairy Sci. 2004; 87: 2977-2986
        • Baldwin R.
        • McLeod K.
        • Klotz J.
        • Heitmann R.
        Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant.
        J. Dairy Sci. 2004; 87: E55-E65
        • Bode J.G.
        • Albrecht U.
        • Häussinger D.
        • Heinrich P.C.
        • Schaper F.
        Hepatic acute phase proteins–regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling.
        22093287
        Eur. J. Cell Biol. 2012; 91: 496-505
        • Bradford B.
        • Yuan K.
        • Farney J.
        • Mamedova L.
        • Carpenter A.
        Invited review: Inflammation during the transition to lactation: New adventures with an old flame.
        26210279
        J. Dairy Sci. 2015; 98: 6631-6650
        • Bradford B.J.
        • Mamedova L.K.
        • Minton J.E.
        • Drouillard J.S.
        • Johnson B.J.
        Daily injection of tumor necrosis factor-α increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle.
        19549751
        J. Nutr. 2009; 139: 1451-1456
        • Brent B.
        Relationship of acidosis to other feedlot ailments.
        789320
        J. Anim. Sci. 1976; 43: 930-935
        • Brunke S.
        • Mogavero S.
        • Kasper L.
        • Hube B.
        Virulence factors in fungal pathogens of man.
        27257746
        Curr. Opin. Microbiol. 2016; 32: 89-95
        • Burcelin R.
        Gut microbiota and immune crosstalk in metabolic disease.
        27617200
        Mol. Metab. 2016; 5: 771-781
        • Cani P.D.
        • Knauf C.
        How gut microbes talk to organs: The role of endocrine and nervous routes.
        27617197
        Mol. Metab. 2016; 5: 743-752
        • Carney E.F.
        Microbiota trigger inflammation.
        27211871
        Nat. Rev. Nephrol. 2016; 12: 376-377
        • Ceciliani F.
        • Ceron J.
        • Eckersall P.
        • Sauerwein H.
        Acute phase proteins in ruminants.
        22521269
        J. Proteomics. 2012; 75: 4207-4231
        • Cerf-Bensussan N.
        • Gaboriau-Routhiau V.
        The immune system and the gut microbiota: Friends or foes?.
        20865020
        Nat. Rev. Immunol. 2010; 10: 735-744
        • Certad G.
        • Viscogliosi E.
        • Chabé M.
        • Cacciò S.M.
        Pathogenic mechanisms of Cryptosporidium and Giardia.
        28336217
        Trends Parasitol. 2017; 33: 561-576
        • Chang G.
        • Zhang K.
        • Xu T.
        • Jin D.
        • Guo J.
        • Zhuang S.
        • Shen X.
        Epigenetic mechanisms contribute to the expression of immune related genes in the livers of dairy cows fed a high concentrate diet.
        25860644
        PLoS One. 2015; 10: e0123942
        • Chang G.
        • Zhuang S.
        • Seyfert H.M.
        • Zhang K.
        • Xu T.
        • Jin D.
        • Guo J.
        • Shen X.
        Hepatic TLR4 signaling is activated by LPS from digestive tract during SARA, and epigenetic mechanisms contribute to enforced TLR4 expression.
        26498350
        Oncotarget. 2015; 6: 38578-38590
        • Chang S.Y.
        • Ko H.J.
        • Kweon M.N.
        Mucosal dendritic cells shape mucosal immunity.
        24626170
        Exp. Mol. Med. 2014; 46: e84
        • Chen Y.
        • Oba M.
        Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis.
        22622335
        Vet. Microbiol. 2012; 159: 451-459
        • Cheroutre H.
        • Lambolez F.
        • Mucida D.
        The light and dark sides of intestinal intraepithelial lymphocytes.
        21681197
        Nat. Rev. Immunol. 2011; 11: 445-456
        • Chistiakov D.A.
        • Bobryshev Y.V.
        • Kozarov E.
        • Sobenin I.A.
        • Orekhov A.N.
        Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance.
        25628617
        Front. Microbiol. 2015; 5: 781
        • Cirillo J.D.
        • Falkow S.
        • Tompkins L.S.
        Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion.
        8039895
        Infect. Immun. 1994; 62: 3254-3261
        • Cirillo J.D.
        • Falkow S.
        • Tompkins L.S.
        • Bermudez L.E.
        Interaction of Mycobacterium avium with environmental amoebae enhances virulence.
        9284149
        Infect. Immun. 1997; 65: 3759-3767
        • Coe M.L.
        • Nagaraja T.G.
        • Sun Y.D.
        • Wallace N.
        • Towne E.G.
        • Kemp K.E.
        • Hutcheson J.P.
        Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis.
        10462007
        J. Anim. Sci. 1999; 77: 2259-2268
        • Colaço H.G.
        • Moita L.F.
        Initiation of innate immune responses by surveillance of homeostasis perturbations.
        27037950
        FEBS J. 2016; 283: 2448-2457
        • Corripio-Miyar Y.
        • Hope J.
        • McInnes C.J.
        • Wattegedera S.R.
        • Jensen K.
        • Pang Y.
        • Entrican G.
        • Glass E.J.
        Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity.
        26407849
        Vet. Res. (Faisalabad). 2015; 46: 112
        • Danscher A.M.
        • Thoefner M.B.
        • Heegaard P.M.
        • Ekstrøm C.T.
        • Jacobsen S.
        Acute phase protein response during acute ruminal acidosis in cattle.
        Livest. Sci. 2011; 135: 62-69
        • Deatherage B.L.
        • Cookson B.T.
        Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life.
        22409932
        Infect. Immun. 2012; 80: 1948-1957
        • Devant M.
        • Penner G.B.
        • Marti S.
        • Quintana B.
        • Fábregas F.
        • Bach A.
        • Arís A.
        Behavior and inflammation of the rumen and cecum in Holstein bulls fed high-concentrate diets with different concentrate presentation forms with or without straw supplementation.
        27898891
        J. Anim. Sci. 2016; 94: 3902-3917
        • Dilda F.
        • Pisani L.F.
        • Rahman M.M.
        • Modina S.
        • Tessaro I.
        • Sartorelli P.
        • Ceciliani F.
        • Lecchi C.
        Distribution of acute phase proteins in the bovine forestomachs and abomasum.
        21704541
        Vet. J. 2012; 192: 101-105
        • Dobson M.J.
        • Brown W.
        • Dobson A.
        • Phillipson A.
        A histological study of the organization of the rumen epithelium of sheep.
        13485339
        Q. J. Exp. Physiol. Cogn. Med. Sci. 1956; 41: 247-253
        • Dong G.
        • Liu S.
        • Wu Y.
        • Lei C.
        • Zhou J.
        • Zhang S.
        Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism.
        21824438
        Acta Vet. Scand. 2011; 53: 48
        • Eadie J.M.
        The development of rumen microbial populations in lambs and calves under various conditions of management.
        J. Gen. Microbiol. 1962; 29: 563-578
        • Eberl G.
        • Colonna M.
        • Di Santo J.P.
        • McKenzie A.N.
        Innate lymphoid cells: A new paradigm in immunology.
        25999512
        Science. 2015; 348: aaa6566
        • Eckburg P.B.
        • Lepp P.W.
        • Relman D.A.
        Archaea and their potential role in human disease.
        12540534
        Infect. Immun. 2003; 71: 591-596
        • Eckel E.F.
        • Ametaj B.N.
        Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows.
        27209132
        J. Dairy Sci. 2016; 99: 5967-5990
        • Elwakeel E.A.
        • Amachawadi R.G.
        • Nour A.M.
        • Nasser M.E.A.
        • Nagaraja T.G.
        • Titgemeyer E.C.
        In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.
        23141820
        J. Dairy Sci. 2013; 96: 495-505
        • Emmanuel D.
        • Madsen K.
        • Churchill T.
        • Dunn S.
        • Ametaj B.
        Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues.
        18024746
        J. Dairy Sci. 2007; 90: 5552-5557
        • Farhadi A.
        • Banan A.
        • Fields J.
        • Keshavarzian A.
        Intestinal barrier: An interface between health and disease.
        12702039
        J. Gastroenterol. Hepatol. 2003; 18: 479-497
        • Forchielli M.L.
        • Walker W.A.
        The role of gut-associated lymphoid tissues and mucosal defence.
        15877894
        Br. J. Nutr. 2005; 93: S41-S48
        • Fournier B.
        • Parkos C.
        The role of neutrophils during intestinal inflammation.
        22491176
        Mucosal Immunol. 2012; 5: 354-366
        • Friedman S.L.
        Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver.
        18195085
        Physiol. Rev. 2008; 88: 125-172
        • Fuertes M.
        • Manga-González Y.
        • Benavides J.
        • González-Lanza M.C.
        • Giráldez F.J.
        • Mezo M.
        • González-Warleta M.
        • Fernández M.
        • Regidor-Cerrillo J.
        • Castaño P.
        • Royo M.
        Immunohistochemical study and mRNA cytokine profile of the local immune response in cattle naturally infected with Calicophoron daubneyi.
        26508417
        Vet. Parasitol. 2015; 214: 178-183
        • Fuertes M.
        • Pérez V.
        • Benavides J.
        • González-Lanza M.C.
        • Mezo M.
        • González-Warleta M.
        • Giráldez F.J.
        • Fernández M.
        • Manga-Gonzálezand M.Y.
        • Ferreras M.C.
        Pathological changes in cattle naturally infected by Calicophoron daubneyi adult flukes.
        25801360
        Vet. Parasitol. 2015; 209: 188-196
        • Fukata M.
        • Arditi M.
        The role of pattern recognition receptors in intestinal inflammation.
        23515136
        Mucosal Immunol. 2013; 6: 451-463
        • Furukawa S.
        • Saito H.
        • Inoue T.
        • Matsuda T.
        • Fukatsu K.
        • Han I.
        • Ikeda S.
        • Hidemura A.
        Supplemental glutamine augments phagocytosis and reactive oxygen intermediate production by neutrophils and monocytes from postoperative patients in vitro.
        10793298
        Nutrition. 2000; 16: 323-329
        • Garcia M.
        • Bequette B.
        • Moyes K.
        Hepatic metabolic response of Holstein cows in early and mid lactation is altered by nutrient supply and lipopolysaccharide in vitro.
        26233455
        J. Dairy Sci. 2015; 98: 7102-7114
        • Garcia M.
        • Elsasser T.
        • Qu Y.
        • Zhu X.
        • Moyes K.
        Glucose supplementation has minimal effects on blood neutrophil function and gene expression in vitro.
        26117347
        J. Dairy Sci. 2015; 98: 6139-6150
        • Garcia M.
        • Elsasser T.H.
        • Juengst L.
        • Qu Y.
        • Bequette B.J.
        • Moyes K.M.
        Short communication: Amino acid supplementation and stage of lactation alter apparent utilization of nutrients by blood neutrophils from lactating dairy cows in vitro.
        26971158
        J. Dairy Sci. 2016; 99: 3777-3783
        • Garcia M.
        • Greco L.F.
        • Block E.
        • Santos J.E.P.
        • Thatcher W.W.
        • Staples C.R.
        Supplementation of essential fatty acids to Holstein calves during late uterine life and first month of life alters hepatic fatty acid profile and gene expression.
        27394951
        J. Dairy Sci. 2016; 99: 7085-7101
        • Ghoshal S.
        • Witta J.
        • Zhong J.
        • De Villiers W.
        • Eckhardt E.
        Chylomicrons promote intestinal absorption of lipopolysaccharides.
        18815435
        J. Lipid Res. 2009; 50: 90-97
        • Gilbert R.A.
        • Klieve A.V.
        Ruminal Viruses (Bacteriophages, Archaeaphages) Rumen Microbiology: From Evolution to Revolution. Springer, India2015: 121-141
        • Goodlad R.
        Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep.
        6914682
        Q. J. Exp. Physiol. 1981; 66: 487-499
        • Graham C.
        • Simmons N.L.
        Functional organization of the bovine rumen epithelium.
        Am. J. Physiol. Regul. Integrat. Comp. Physiol. 2005; 288: R173-R181
        • Gutzeit C.
        • Magri G.
        • Cerutti A.
        Intestinal IgA production and its role in host-microbe interaction.
        24942683
        Immunol. Rev. 2014; 260: 76-85
        • Hajishengallis G.
        • Lamont R.J.
        Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts.
        26968354
        Trends Microbiol. 2016; 24: 477-489
        • Haskins B.
        • Wise M.
        • Craig H.
        • Blumer T.
        • Barrick E.
        Effects of adding low levels of roughages or roughage substitutes to high energy rations for fattening steers.
        5391283
        J. Anim. Sci. 1969; 29: 345-353
        • Hathaway L.
        • Kraehenbuhl J.-P.
        The role of M cells in mucosal immunity.
        10766026
        Cell. Mol. Life Sci. 2000; 57: 323-332
        • Hawrelak J.A.
        • Myers S.P.
        The causes of intestinal dysbiosis: A review.
        15253677
        Altern. Med. Rev. 2004; 9: 180-197
        • Hertel L.
        Human cytomegalovirus tropism for mucosal myeloid dendritic cells.
        24888709
        Rev. Med. Virol. 2014; 24: 379-395
        • Hochepied T.
        • Berger F.G.
        • Baumann H.
        • Libert C.
        α 1-Acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties.
        12485617
        Cytokine Growth Factor Rev. 2003; 14: 25-34
        • Hofstad T.
        Pathogenicity of anaerobic gram-negative rods: possible mechanisms.
        6729337
        Rev. Infect. Dis. 1984; 6: 189-199
        • Hungate R.
        The rumen microbial ecosystem.
        Annu. Rev. Ecol. Syst. 1975; 6: 39-66
        • Iseri V.
        • Klasing K.
        Dynamics of the systemic components of the chicken (Gallus gallus domesticus) immune system following activation by Escherichia coli; Implications for the costs of immunity.
        23500513
        Dev. Comp. Immunol. 2013; 40: 248-257
        • Iseri V.
        • Klasing K.
        Changes in the amount of lysine in protective proteins and immune cells after a systemic response to dead Escherichia coli: Implications for the nutritional costs of immunity.
        25231951
        Integr. Comp. Biol. 2014; 54: 922-930
        • Jacob M.E.
        • Callaway T.R.
        • Nagaraja T.
        Dietary interactions and interventions affecting Escherichia coli O157 colonization and shedding in cattle.
        19737058
        Foodborne Pathog. Dis. 2009; 6: 785-792
        • Janeway C.A.
        The immune system evolved to discriminate infectious nonself from noninfectious self.
        1739426
        Immunol. Today. 1992; 13: 11-16
        • Jensen H.
        • Olsen S.
        • Aalbaek B.
        Gastrointestinal aspergillosis and zygomycosis of cattle.
        8140723
        Vet. Pathol. 1994; 31: 28-36
        • Jensen R.
        • Deane H.
        • Cooper L.
        • Miller V.
        • Graham W.
        The rumenitis-liver abscess complex in beef cattle.
        13148469
        Am. J. Vet. Res. 1954; 15: 202
        • Jiang L.
        • Sørensen P.
        • Røntved C.
        • Vels L.
        • Ingvartsen K.L.
        Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide.
        18816405
        BMC Genomics. 2008; 9: 443
        • Jiang Y.
        • Xie M.
        • Chen W.
        • Talbot R.
        • Maddox J.F.
        • Faraut T.
        • Wu C.
        • Muzny D.M.
        • Li Y.
        • Zhang W.
        • Stanton J.A.
        The sheep genome illuminates biology of the rumen and lipid metabolism.
        24904168
        Science. 2014; 344: 1168-1173
        • Jones G.
        • Jayappa H.
        • Hunsaker B.
        • Sweeney D.
        • Rapp-Gabrielson V.
        • Wasmoen T.
        • Nagaraja T.G.
        • Swingle S.
        • Branine M.
        Efficacy of an Arcanobacterium pyogenes-Fusobacterium necrophorum bacterin-toxoid as an aid in the prevention of liver abscesses in feedlot cattle.
        Bovine Pract. 2004; 38: 36-45
        • Josefsen T.D.
        • Landsverk T.
        T cell subsets and Langerhans cells in the forestomach mucosa of adult sheep and sheep foetuses.
        8797280
        Vet. Immunol. Immunopathol. 1996; 51: 101-111
        • Josefsen T.D.
        • Landsverk T.
        Increase in gamma delta T cells in the ruminal mucosa of reindeer calves (Rangifer tarandus tarandus L.) induced by baled grass silage.
        9533277
        Vet. Immunol. Immunopathol. 1997; 60: 197-202
        • Kanoe M.
        • Iwaki K.
        Adherence of Fusobacterium necrophorum to bovine ruminal cells.
        3820273
        J. Med. Microbiol. 1987; 23: 69-73
        • Kanoe M.
        • Koyanagi Y.
        • Kondo C.
        • Mamba K.
        • Makita T.
        • Kai K.
        Location of haemagglutinin in bacterial cells of Fusobacterium necrophorum ssp. necrophorum.
        10347900
        Microbios. 1998; 96: 33-38
        • Kell D.B.
        • Pretorius E.
        On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: The central roles of LPS and LPS-induced cell death.
        26345428
        Integr. Biol. (Camb.). 2015; 7: 1339-1377
        • Kelly D.
        • Conway S.
        • Aminov R.
        Commensal gut bacteria: Mechanisms of immune modulation.
        15922949
        Trends Immunol. 2005; 26: 326-333
        • Kelsall B.
        Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages.
        19079213
        Mucosal Immunol. 2008; 1: 460-469
        • Khafipour E.
        • Krause D.
        • Plaizier J.
        A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation.
        19233799
        J. Dairy Sci. 2009; 92: 1060-1070
        • Klasing K.
        Overview of the inflammatory response and its nutritional costs.
        J. Anim. Sci. 2016; 94: 89-90
        • Kraehenbuhl J.-P.
        • Neutra M.R.
        Molecular and cellular basis of immune protection of mucosal surfaces.
        1438580
        Physiol. Rev. 1992; 72: 853-879
        • Kucharzik T.
        • Lügering N.
        • Rautenberg K.
        • Lügering A.
        • Schmidt M.A.
        • Stoll R.
        • Domschke W.
        Role of M cells in intestinal barrier function.
        11193574
        Ann. N. Y. Acad. Sci. 2000; 915: 171-183
        • Kumar A.
        • Gart E.
        • Nagaraja T.
        • Narayanan S.
        Adhesion of Fusobacterium necrophorum to bovine endothelial cells is mediated by outer membrane proteins.
        23153522
        Vet. Microbiol. 2013; 162: 813-818
        • Kumar A.
        • Peterson G.
        • Nagaraja T.G.
        • Narayanan S.
        Outer membrane proteins of Fusobacterium necrophorum ssp. necrophorum and ssp. funduliforme.
        23712857
        J. Basic Microbiol. 2014; 54: 812-817
        • Kuss S.K.
        • Best G.T.
        • Etheredge C.A.
        • Pruijssers A.J.
        • Frierson J.M.
        • Hooper L.V.
        • Dermody T.S.
        • Pfeiffer J.K.
        Intestinal microbiota promote enteric virus replication and systemic pathogenesis.
        21998395
        Science. 2011; 334: 249-252
        • Kvidera S.K.
        • Horst E.A.
        • Abuajamieh M.
        • Mayorga E.J.
        • Sanz Fernandez M.V.
        • Baumgard L.H.
        Technical note: A procedure to estimate glucose requirements of an activated immune system in steers.
        27898958
        J. Anim. Sci. 2016; 94: 4591-4599
        • Kvidera S.K.
        • Horst E.A.
        • Abuajamieh M.
        • Mayorga E.J.
        • Sanz Fernandez M.V.
        • Baumgard L.H.
        Glucose requirements of an activated immune system in lactating Holstein cows.
        28041733
        J. Dairy Sci. 2017; 100: 2360-2374
        • Lalor S.J.
        • McLoughlin R.M.
        Memory γδ T Cells—Newly appreciated protagonists in infection and immunity.
        27567182
        Trends Immunol. 2016; 37: 690-702
        • Lassman B.A.
        Release of endotoxin from rumen bacteria and endotoxin absorption from the rumen.
        1980 (PhD Diss. Kansas State Univ.,Manhattan)
        • Law D.
        Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli.
        10792533
        J. Appl. Microbiol. 2000; 88: 729-745
        • Lee W.-J.
        Bacterial-modulated host immunity and stem cell activation for gut homeostasis.
        19797765
        Genes Dev. 2009; 23: 2260-2265
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • Turnbaugh P.J.
        • Ramey R.R.
        • Bircher J.S.
        • Schlegel M.L.
        • Tucker T.A.
        • Schrenzel M.D.
        • Knight R.
        Evolution of mammals and their gut microbes.
        18497261
        Science. 2008; 320: 1647-1651
        • Li D.
        • Wang P.
        • Wang P.
        • Hu X.
        • Chen F.
        The gut microbiota: A treasure for human health.
        27592384
        Biotechnol. Adv. 2016; 34: 1210-1224
        • Liu J.-H.
        • Bian G.-R.
        • Zhu W.-Y.
        • Mao S.-Y.
        High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats.
        25784904
        Front. Microbiol. 2015; 6: 167
        • Liu J.-H.
        • Xu T.-T.
        • Liu Y.-J.
        • Zhu W.-Y.
        • Mao S.-Y.
        A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats.
        23739344
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305: R232-R241
        • Mackie R.
        • Aminov R.
        • White B.
        • McSweeney C.
        Molecular ecology and diversity in gut microbial ecosystems.
        in: Pages 61–77 in Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction CAB Int., Oxford, UK2000
        • Macpherson A.J.
        • Harris N.L.
        Interactions between commensal intestinal bacteria and the immune system.
        15173836
        Nat. Rev. Immunol. (Paris). 2004; 4: 478-485
        • Mahesh R.
        • Singh G.
        • Kumar P.
        Light and scanning electron microscopic studies on the rumen of goat (Capra hircus).
        Vet. Res. (Faisalabad). 2014; 2: 74-80
        • Malmuthuge N.
        • Li M.
        • Fries P.
        • Griebel P.J.
        Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defense molecules throughout the gastrointestinal tract of dairy calves.
        22321738
        Vet. Immunol. Immunopathol. 2012; 146: 18-26
        • Mamedova L.K.
        • Yuan K.
        • Laudick A.N.
        • Fleming S.D.
        • Mashek D.G.
        • Bradford B.J.
        Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells.
        23465595
        J. Nutr. Biochem. 2013; 24: 1499-1507
        • Manicassamy S.
        • Reizis B.
        • Ravindran R.
        • Nakaya H.
        • Salazar-Gonzalez R.M.
        • Wang Y.-C.
        • Pulendran B.
        Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine.
        20705860
        Science. 2010; 329: 849-853
        • Mao S.
        • Zhang R.
        • Wang D.
        • Zhu W.
        Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing.
        23994204
        Anaerobe. 2013; 24: 12-19
        • McCann J.C.
        • Luan S.
        • Cardoso F.C.
        • Derakhshani H.
        • Khafipour E.
        • Loor J.J.
        Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium.
        27242724
        Front. Microbiol. 2016; 7: 701
        • McCuddin Z.
        • Carlson S.
        • Rasmussen M.
        • Franklin S.
        Klebsiella to Salmonella gene transfer within rumen protozoa: Implications for antibiotic resistance and rumen defaunation.
        16423473
        Vet. Microbiol. 2006; 114: 275-284
        • Medawar P.
        Immunological tolerance.
        13768821
        Nature. 1961; 189: 14-17
        • Medzhitov R.
        Toll-like receptors and innate immunity.
        11905821
        Nat. Rev. Immunol. 2001; 1: 135-145
        • Medzhitov R.
        • Janeway C.A.
        Decoding the patterns of self and nonself by the innate immune system.
        11951031
        Science. 2002; 296: 298-300
        • Minuti A.
        • Ahmed S.
        • Trevisi E.
        • Piccioli-Cappelli F.
        • Bertoni G.
        • Jahan N.
        • Bani P.
        Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry.
        24987080
        J. Anim. Sci. 2014; 92: 3966-3977
        • Minuti A.
        • Palladino A.
        • Khan M.
        • Alqarni S.
        • Agrawal A.
        • Piccioli-Capelli F.
        • Hidalgo F.
        • Cardoso F.
        • Trevisi E.
        • Loor J.
        Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows.
        26409956
        J. Dairy Sci. 2015; 98: 8940-8951
        • Moyes D.L.
        • Wilson D.
        • Richardson J.P.
        • Mogavero S.
        • Tang S.X.
        • Wernecke J.
        • Höfs S.
        • Gratacap R.L.
        • Robbins J.
        • Runglall M.
        Candidalysin is a fungal peptide toxin critical for mucosal infection.
        27027296
        Nature. 2016; 532: 64
        • Moyes K.M.
        • Drackley J.K.
        • Salak-Johnson J.L.
        • Morin D.E.
        • Hope J.C.
        • Loor J.J.
        Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation.
        19700690
        J. Dairy Sci. 2009; 92: 4301-4316
        • Nagaraja T.
        • Bartley E.
        • Fina L.
        • Anthony H.
        Relationship of rumen gram-negative bacteria and free endotoxin to lactic acidosis in cattle.
        36370
        J. Anim. Sci. 1978; 47: 1329-1337
        • Nagaraja T.
        • Bartley E.
        • Fina L.
        • Anthony H.
        • Dennis S.
        • Bechtle R.
        Quantitation of endotoxin in cell-free rumen fluid of cattle.
        80404
        J. Anim. Sci. 1978; 46: 1759-1767
        • Nagaraja T.
        • Chengappa M.
        Liver abscesses in feedlot cattle: A review.
        9464910
        J. Anim. Sci. 1998; 76: 287-298
        • Nagaraja T.
        • Fina L.
        • Bartley E.
        • Anthony H.
        Endotoxic activity of cell-free rumen fluid from cattle fed hay or grain.
        728853
        Can. J. Microbiol. 1978; 24: 1253-1261
        • Nagaraja T.
        • Lechtenberg K.F.
        Liver abscesses in feedlot cattle.
        17606156
        Vet. Clin. North Am. Food Anim. Pract. 2007; 23: 351-369
        • Nagaraja T.
        • Narayanan S.
        • Stewart G.
        • Chengappa M.
        Fusobacterium necrophorum infections in animals: Pathogenesis and pathogenic mechanisms.
        16701574
        Anaerobe. 2005; 11: 239-246
        • Nagaraja T.
        • Titgemeyer E.
        Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook.
        17517750
        J. Dairy Sci. 2007; 90: E17-E38
        • Narayanan S.
        • Stewart G.C.
        • Chengappa M.
        • Willard L.
        • Shuman W.
        • Wilkerson M.
        • Nagaraja T.
        Fusobacterium necrophorum leukotoxin induces activation and apoptosis of bovine leukocytes.
        12117974
        Infect. Immun. 2002; 70: 4609-4620
        • Neal M.D.
        • Leaphart C.
        • Levy R.
        • Prince J.
        • Billiar T.R.
        • Watkins S.
        • Li J.
        • Cetin S.
        • Ford H.
        • Schreiber A.
        • Hackam D.J.
        Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier.
        16493066
        J. Immunol. 2006; 176: 3070-3079
        • Neish A.S.
        Microbes in gastrointestinal health and disease.
        19026645
        Gastroenterology. 2009; 136: 65-80
        • Ogle C.K.
        • Ogle J.D.
        • Mao J.-X.
        • Simon J.
        • Noel J.G.
        • Li B.-G.
        • Alexander J.W.
        Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils.
        8201747
        JPEN J. Parenter. Enteral Nutr. 1994; 18: 128-133
        • Owens F.
        • Secrist D.
        • Hill W.
        • Gill D.
        Acidosis in cattle: A review.
        9464909
        J. Anim. Sci. 1998; 76: 275-286
        • Petersen C.
        • Round J.L.
        Defining dysbiosis and its influence on host immunity and disease.
        24798552
        Cell. Microbiol. 2014; 16: 1024-1033
        • Peterson L.W.
        • Artis D.
        Intestinal epithelial cells: Regulators of barrier function and immune homeostasis.
        24566914
        Nat. Rev. Immunol. 2014; 14: 141-153
        • Philippidis P.
        • Mason J.C.
        • Evans B.J.
        • Nadra I.
        • Taylor K.M.
        • Haskard D.O.
        • Landis R.C.
        Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery.
        14656926
        Circ. Res. 2004; 94: 119-126
        • Pithon-Curi T.C.
        • De Melo M.P.
        • Curi R.
        Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: A comparative study.
        15338472
        Cell Biochem. Funct. 2004; 22: 321-326
        • Plaizier J.
        • Khafipour E.
        • Li S.
        • Gozho G.
        • Krause D.
        Subacute ruminal acidosis (SARA), endotoxins and health consequences.
        Anim. Feed Sci. Technol. 2012; 172: 9-21
        • Poonia A.
        • Kumar P.
        • Kumar P.
        Histomorphological studies on the rumen of the sheep (Ovis aries).
        Haryana Vet. 2011; 50: 49-52
        • Puniya A.K.
        • Singh R.
        • Kamra D.N.
        Rumen Microbiology: From Evolution to Revolution.
        Springer, India2015
        • Pyarokhil A.H.
        • Ishihara M.
        • Sasaki M.
        • Kitamura N.
        Immunohistochemical study on the ontogenetic development of the regional distribution of peptide YY, pancreatic polypeptide, and glucagon-like peptide 1 endocrine cells in bovine gastrointestinal tract.
        22233836
        Regul. Pept. 2012; 175: 15-20
        • Rahman M.M.
        • Lecchi C.
        • Avallone G.
        • Roccabianca P.
        • Sartorelli P.
        • Ceciliani F.
        Lipopolysaccharide-binding protein: Local expression in bovine extrahepatic tissues.
        20452064
        Vet. Immunol. Immunopathol. 2010; 137: 28-35
        • Rasmussen M.A.
        • Carlson S.A.
        • Franklin S.K.
        • McCuddin Z.P.
        • Wu M.T.
        • Sharma V.K.
        Exposure to rumen protozoa leads to enhancement of pathogenicity of and invasion by multiple-antibiotic-resistant Salmonella enterica bearing SGI1.
        16040979
        Infect. Immun. 2005; 73: 4668-4675
        • Rescigno M.
        • Urbano M.
        • Valzasina B.
        • Francolini M.
        • Rotta G.
        • Bonasio R.
        • Granucci F.
        • Kraehenbuhl J.-P.
        • Ricciardi-Castagnoli P.
        Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
        11276208
        Nat. Immunol. 2001; 2: 361-367
        • Rezac D.
        • Thomson D.
        • Bartle S.
        • Osterstock J.
        • Prouty F.
        • Reinhardt C.
        Prevalence, severity, and relationships of lung lesions, liver abnormalities, and rumen health scores measured at slaughter in beef cattle.
        24753377
        J. Anim. Sci. 2014; 92: 2595-2602
        • Ribeiro G.
        • Gruninger R.
        • Badhan A.
        • McAllister T.
        Mining the rumen for fibrolytic feed enzymes.
        Anim. Front. 2016; 6: 20-26
        • Ricard G.
        • McEwan N.R.
        • Dutilh B.E.
        • Jouany J.-P.
        • Macheboeuf D.
        • Mitsumori M.
        • McIntosh F.M.
        • Michalowski T.
        • Nagamine T.
        • Nelson N.
        Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment.
        16472398
        BMC Genomics. 2006; 7: 22
        • Ross E.M.
        • Petrovski S.
        • Moate P.J.
        • Hayes B.J.
        Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle.
        24180266
        BMC Microbiol. 2013; 13: 242
        • Rumbo M.
        • Anderle P.
        • Didierlaurent A.
        • Sierro F.
        • Debard N.
        • Sirard J.C.
        • Finke D.
        • Kraehenbuhl J.P.
        How the gut links innate and adaptive immunity.
        15681739
        Ann. N. Y. Acad. Sci. 2004; 1029: 16-21
        • Russell J.B.
        Factors affecting lysine degradation by ruminal fusobacteria.
        16542401
        FEMS Microbiol. Ecol. 2006; 56: 18-24
        • Sakata T.
        • Tamate H.
        Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate.
        721981
        J. Dairy Sci. 1978; 61: 1109-1113
        • Sansonetti P.J.
        War and peace at mucosal surfaces.
        15573130
        Nat. Rev. Immunol. 2004; 4: 953-964
        • Sato S.
        Subacute ruminal acidosis (SARA) challenge, ruminal condition and cellular immunity in cattle.
        25872324
        Jpn. J. Vet. Res. 2015; 63: S25-S36
        • Scala G.
        • Corona M.
        • Maruccio L.
        Structural, histochemical and immunocytochemical study of the forestomach mucosa in domestic ruminants.
        21029150
        Anat. Histol. Embryol. 2011; 40: 47-54
        • Schiavi E.
        • Smolinska S.
        • O’Mahony L.
        Intestinal dendritic cells.
        25651073
        Curr. Opin. Gastroenterol. 2015; 31: 98-103
        • Schweigel M.
        • Freyer M.
        • Leclercq S.
        • Etschmann B.
        • Lodemann U.
        • Böttcher A.
        • Martens H.
        Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium.
        16177895
        J. Comp. Physiol. B. 2005; 175: 575-591
        • Sigurethardóttir O.G.
        • Valheim M.
        • Press C.M.
        Establishment of Mycobacterium avium ssp. paratuberculosis infection in the intestine of ruminants.
        15063592
        Adv. Drug Deliv. Rev. 2004; 56: 819-834
        • Singh R.
        • Sahai B.
        • Jha G.
        Histopathology of the duodenum and rumen of goats during experimental infections with Paramphistomum cervi.
        6541393
        Vet. Parasitol. 1984; 15: 39-46
        • Smith P.D.
        • Ochsenbauer-Jambor C.
        • Smythies L.E.
        Intestinal macrophages: Unique effector cells of the innate immune system.
        16048547
        Immunol. Rev. 2005; 206: 149-159
        • Smythies L.E.
        • Shen R.
        • Bimczok D.
        • Novak L.
        • Clements R.H.
        • Eckhoff D.E.
        • Bouchard P.
        • George M.D.
        • Hu W.K.
        • Dandekar S.
        Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation.
        20388715
        J. Biol. Chem. 2010; 285: 19593-19604
        • Sommer F.
        • Bäckhed F.
        The gut microbiota—Masters of host development and physiology.
        23435359
        Nat. Rev. Microbiol. 2013; 11: 227-238
        • Steele M.
        • AlZahal O.
        • Greenwood S.
        • Matthews J.
        • McBride B.
        Technical note: Use of laser capture microdissection for the localization of tissue-specific global gene expression in rumen papillae.
        24140313
        J. Dairy Sci. 2013; 96: 7748-7752
        • Steimle A.
        • Frick J.-S.
        Molecular mechanisms of induction of tolerant and tolerogenic intestinal dendritic cells in mice.
        10.1155/2016/1958650
        26981546
        J. Immunol. Res. 2016;
        • Steinberg K.M.
        • Levin B.R.
        Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage.
        17535798
        Proc. Biol. Sci. 2007; 274: 1921-1929
        • Stockinger B.
        • Veldhoen M.
        Differentiation and function of Th17 T cells.
        17433650
        Curr. Opin. Immunol. 2007; 19: 281-286
        • Su G.L.
        • Klein R.D.
        • Aminlari A.
        • Zhang H.Y.
        • Steinstraesser L.
        • Alarcon W.H.
        • Remick D.G.
        • Wang S.C.
        Kupffer cell activation by lipopolysaccharide in rats: Role for lipopolysaccharide binding protein and toll-like receptor 4.
        10733550
        Hepatology. 2000; 31: 932-936
        • Sumagin R.
        • Brazil J.C.
        • Nava P.
        • Nishio H.
        • Alam A.
        • Luissint A.C.
        • Weber D.A.
        • Neish A.S.
        • Nusrat A.
        • Parkos C.A.
        Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.
        26732677
        Mucosal Immunol. 2016; 9: 1151-1162
        • Tadepalli S.
        • Narayanan S.
        • Stewart G.
        • Chengappa M.
        • Nagaraja T.
        Fusobacterium necrophorum: A ruminal bacterium that invades liver to cause abscesses in cattle.
        18595747
        Anaerobe. 2009; 15: 36-43
        • Takeuchi O.
        • Akira S.
        Pattern recognition receptors and inflammation.
        20303872
        Cell. 2010; 140: 805-820
        • Tan Z.
        • Nagaraja T.
        • Chengappa M.
        Selective enumeration of Fusobacterium necrophorum from the bovine rumen.
        8017925
        Appl. Environ. Microbiol. 1994; 60: 1387-1389
        • Tan Z.
        • Nagaraja T.
        • Chengappa M.
        • Smith J.
        Biological and biochemical characterization of Fusobacterium necrophorum leukotoxin.
        8017697
        Am. J. Vet. Res. 1994; 55: 515-521
        • Thaiss C.A.
        • Zmora N.
        • Levy M.
        • Elinav E.
        The microbiome and innate immunity.
        27383981
        Nature. 2016; 535: 65-74
        • Thomson R.
        Rumenitis in cattle.
        17421876
        Can. Vet. J. 1967; 8: 189-192
        • Tisoncik J.R.
        • Korth M.J.
        • Simmons C.P.
        • Farrar J.
        • Martin T.R.
        • Katze M.G.
        Into the eye of the cytokine storm.
        22390970
        Microbiol. Mol. Biol. Rev. 2012; 76: 16-32
        • Trevisi E.
        • Amadori M.
        • Riva F.
        • Bertoni G.
        • Bani P.
        Evaluation of innate immune responses in bovine forestomachs.
        24351979
        Res. Vet. Sci. 2014; 96: 69-78
        • Turner J.R.
        Intestinal mucosal barrier function in health and disease.
        19855405
        Nat. Rev. Immunol. 2009; 9: 799-809
        • Uematsu S.
        • Fujimoto K.
        • Jang M.H.
        • Yang B.-G.
        • Jung Y.-J.
        • Nishiyama M.
        • Sato S.
        • Tsujimura T.
        • Yamamoto M.
        • Yokota Y.
        Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5.
        18516037
        Nat. Immunol. 2008; 9: 769-776
        • Vance R.D.
        • Preston R.
        • Klosterman E.
        • Cahill V.
        Utilization of whole shelled and crimped corn grain with varying proportions of corn silage by growing-finishing steers.
        J. Anim. Sci. 1972; 35: 598-605
        • Walker J.A.
        • Barlow J.L.
        • McKenzie A.N.
        Innate lymphoid cells—How did we miss them?.
        23292121
        Nat. Rev. Immunol. 2013; 13: 75
        • Wang S.
        • Xia P.
        • Chen Y.
        • Qu Y.
        • Xiong Z.
        • Ye B.
        • Du Y.
        • Tian Y.
        • Yin Z.
        • Xu Z.
        Regulatory innate lymphoid cells control innate intestinal inflammation.
        28844693
        Cell. 2017; 171: 201-216
        • Wang Y.
        • Devkota S.
        • Musch M.W.
        • Jabri B.
        • Nagler C.
        • Antonopoulos D.A.
        • Chervonsky A.
        • Chang E.B.
        Regional mucosa-associated microbiota determine physiological expression of TLR2 and TLR4 in murine colon.
        21042588
        PLoS One. 2010; 5: e13607
        • Weiss G.
        • Maaetoft-Udsen K.
        • Stifter S.A.
        • Hertzog P.
        • Goriely S.
        • Thomsen A.R.
        • Paludan S.R.
        • Frøkiær H.
        MyD88 Drives the IFN-β Response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7.
        22896628
        J. Immunol. 2012; 189: 2860-2868
        • Wieser M.
        • Preston T.
        • Macdearmid A.
        • Rowland A.
        Intensive beef production. 8. The effect of chlortetracycline on growth, feed utilisation and incidence of liver abscesses in barley beef cattle.
        Anim. Prod. 1966; 8: 411-423
        • Xiang R.
        • Oddy V.H.
        • Archibald A.L.
        • Vercoe P.E.
        • Dalrymple B.P.
        Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues.
        26989612
        PeerJ. 2016; 4: e1762
        • Yáñez-Ruiz D.R.
        • Abecia L.
        • Newbold C.J.
        Manipulating rumen microbiome and fermentation through interventions during early life: A review.
        26528276
        Front. Microbiol. 2015; 6: 1133
        • Yohe T.
        • Tucker H.
        • Parsons C.
        • Geiger A.
        • Akers R.
        • Daniels K.
        Short communication: Initial evidence supporting existence of potential rumen epidermal stem and progenitor cells.
        27372582
        J. Dairy Sci. 2016; 99: 7654-7660
        • Yuan K.
        • Farney J.K.
        • Mamedova L.K.
        • Sordillo L.M.
        • Bradford B.J.
        TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows.
        24260367
        PLoS One. 2013; 8: e80316
        • Zebeli Q.
        • Ghareeb K.
        • Humer E.
        • Metzler-Zebeli B.
        • Besenfelder U.
        Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows.
        26679807
        Res. Vet. Sci. 2015; 103: 126-136
        • Zebeli Q.
        • Metzler-Zebeli B.
        Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle.
        22370295
        Res. Vet. Sci. 2012; 93: 1099-1108
        • Zechner E.L.
        Inflammatory disease caused by intestinal pathobionts.
        28189956
        Curr. Opin. Microbiol. 2017; 35: 64-69
        • Zhang R.
        • Zhu W.
        • Mao S.
        High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle.
        27478614
        J. Anim. Sci. Biotechnol. 2016; 7: 42
        • Zigmond E.
        • Jung S.
        Intestinal macrophages: Well educated exceptions from the rule.
        23477922
        Trends Immunol. 2013; 34: 162-168
        • Zweigner J.
        • Schumann R.R.
        • Weber J.R.
        The role of lipopolysaccharide-binding protein in modulating the innate immune response.
        16483818
        Microbes Infect. 2006; 8: 946-952