Advertisement

Effects of supplementation with betaine and superdosed phytase on semen characteristics of boars during and after mild heat stress

      ABSTRACT

      The purpose of this experiment was to evaluate the effects of betaine and superdosed phytase on boar reproduction during mild heat stress. Twenty-seven mature (36 wk old), crossbred boars [Duroc × (Landrace × Yorkshire)] were randomly allocated to treatment and were fed 2.6 kg/d of 1 of 3 corn, soybean meal diets: control (CNT; 250 phytase units/kg Escherichia coli phytase; n = 9), betaine (BET; 250 phytase units/kg E. coli phytase and 0.6% betaine; n = 9), and betaine and superdosed phytase (BP; 2,500 phytase units/kg E. coli phytase and 0.6% betaine; n = 9). The experiment was split into 4 environmental phases (4 wk/phase) consisting of pre-heat stress (26°C), heat stress (30.2°C), post-heat stress 1 (16.7°C), and post-heat stress 2 (17.5°C). Semen was collected weekly from each boar and was evaluated for semen quantity and quality parameters. Total motility, progressive motility and percentage of morphologically normal sperm were reduced in the heat stress period (P < 0.01) with no effects from the dietary treatments (P ≥ 0.27). Total sperm did not differ among treatments (P = 0.99). Percent distal droplets increased from the pre-heat stress to heat stress period for CNT (P < 0.01), but the increase was not statistically different for BET (P = 0.97) or BP (P = 1.00). This suggests that supplementation with betaine alone or with phytase may potentially reduce the effects of heat stress on specific morphological abnormalities, though total normal morphology did not differ.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Adeola O.
        Digestive utilization of minerals by weanling pigs fed copper- and phytase-supplemented diets.
        Can. J. Anim. Sci. 1995; 75: 603-610
        • Adeola O.
        • Lawrence B.V.
        • Sutton A.L.
        • Cline T.R.
        Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs.
        8586598
        J. Anim. Sci. 1995; 73: 3384-3391
        • Al-Sa’aidi J.A.A.
        • Ali S.H.
        • Al-Se’eide M.J.A.
        Role of dietary supplementation of microbial phytase in roosters reproductive system efficiency of broiler breeder (Hubbard Flex).
        Iraqi J. Vet. Sci. 2009; 23: 511-520
        • Alirezaei M.
        • Khoshdel Z.
        • Dezfoulian O.
        • Rashidipour M.
        • Taghadosi V.
        Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats.
        25665954
        J. Physiol. Sci. 2015; 65: 243-252
        • Ankom Technology
        Acid Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I).
        Ankom Technol. Corp., Macedon, NY2017
        • Ankom Technology
        Neutral Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I).
        Ankom Technol. Corp., Macedon, NY2017
        • AOAC International
        Official Methods of Analysis of AOAC International.
        19th ed. AOAC Int., Arlington, VA2012
        • Banu N.A.
        • Hoque A.
        • Watanabe-Sugimoto M.
        • Matsuoka K.
        • Nakamura Y.
        • Shimoishi Y.
        • Murata Y.
        Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.
        18471929
        J. Plant Physiol. 2009; 166: 146-156
        • Baumgard L.
        • Rhoads R.P.
        Effects of environment on metabolism. Pages 81–100 in Environmental Physiology of Livestock.
        in: Collier R.L. Collier J.L. Wiley-Blackwell, Hoboken, NJ2012
        • Broekhuijse M.L.
        • Sostaric E.
        • Feitsma H.
        • Gadella B.M.
        Application of computer-assisted semen analysis to explain variations in pig fertility.
        J. Anim. Sci. 2012; 90: 779-789
        • Brown B.W.
        A review of nutritional influences on reproduction in boars, bulls and rams.
        Reprod. Nutr. Dev. 1994; 34: 89-114
        • Cabezon F.A.
        • Schinckel A.
        • Richert B.T.
        • Stewart K.R.
        • Gandarillas M.
        • Peralta W.A.
        Effect of betaine supplementation during summer on sow lactation performance and subsequent farrowing performance.
        J. Anim. Sci. 2016; 94 (a): 124
        • Cabezon F.A.
        • Stewart K.R.
        • Schinckel A.P.
        • Barnes W.
        • Boyd R.D.
        • Wilcock P.
        • Woodliff J.
        Effect of natural betaine on estimates of semen quality in mature AI boars during summer heat stress.
        27095614
        Anim. Reprod. Sci. 2016; 170 (b): 25-37
        • Cameron R.D.A.
        • Blackshaw A.W.
        The effect of elevated ambient-temperature on spermatogenesis in the boar.
        7401033
        J. Reprod. Fertil. 1980; 59: 173-179
        • Casarin A.
        • Forat M.
        • Zabaras-krick B.J.
        Interrelationships between betaine (Betafin-BCR) and level of feed intake on performance parameters and carcass characteristics of growing-finishing pigs.
        J. Anim. Sci. 1997; 75 (Abstr.): 75
        • Edwards R.L.
        • Omtvedt I.T.
        • Turman E.J.
        • Stephens D.F.
        • Mahoney G.W.A.
        Reproductive performance of gilts following heat stress prior to breeding and in early gestation.
        J. Anim. Sci. 1968; 27: 1634-1637
        • Finkelstein J.D.
        Methionine metabolism in mammals.
        J. Nutr. Biochem. 1990; 1: 228-237
        • Franca L.R.
        • Avelar G.F.
        • Almeida F.F.L.
        Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs.
        Theriogenology. 2005; 63: 300-318
        • Gebremedhin K.G.
        Heat stress and evaporative cooling. Pages 35–45 in Environmental Physiology of Livestock.
        in: Collier R.L. Collier J.L. Wiley-Blackwell, Hoboken, NJ2012
        • Hidiroglou M.
        • Knipfel J.E.
        Zinc in mammalian sperm: A review.
        6378991
        J. Dairy Sci. 1984; 67: 1147-1156
        • Huang Y.H.
        • Lo L.L.
        • Liu S.H.
        • Yang T.S.
        Age-related changes in semen quality characteristics and expectations of reproductive longevity in Duroc boars.
        J. Anim. Sci. 2010; 81: 432-437
        • Huynh T.T.
        • Aarnink A.J.
        • Verstegen M.W.
        • Gerrits W.J.
        • Heetkamp M.J.
        • Kemp B.
        • Canh T.T.
        Effects of increasing temperatures on physiological changes in pigs at different relative humidities.
        J. Anim. Sci. 2005; 83: 1385-1396
        • Illies C.
        • Gromada J.
        • Fiume R.
        • Leibiger B.
        • Yu J.
        • Juhl K.
        • Yang S.
        • Barma D.K.
        • Falck J.R.
        • Saiardi A.
        • Barker C.J.
        • Berggren P.
        Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells.
        Science. 2007; 318: 1299-1302
        • Kennedy B.W.
        • Wilkins J.N.
        Boar, breed and environmental-factors influencing semen characteristics of boars used in artificial-insemination.
        Can. J. Anim. Sci. 1984; 64: 833-843
        • Kidd M.T.
        • Ferket P.R.
        • Garlich J.D.
        Nutritional and osmoregulatory functions of betaine.
        Worlds Poult. Sci. J. 1997; 53: 125-139
        • Kuhn I.
        • Schollenberger M.
        • Manner K.
        Effect of dietary phytase level on intestinal phytate degradation and bone mineralization in growing pigs.
        10.2527/jas2015-9771
        J. Anim. Sci. 2016; 94: 264-267
        • Lei X.
        • Ku P.K.
        • Miller E.R.
        • Ullrey D.E.
        • Yokoyama M.T.
        Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs.
        8389400
        J. Nutr. 1993; 123: 1117-1123
        • Louis G.F.
        • Lewis A.J.
        • Weldon W.C.
        • Ermer P.M.
        • Miller P.S.
        • Kittok R.J.
        • Stroup W.W.
        The effect of energy and protein intake on boar libido, semen characteristics, and plasma hormone concentrations.
        J. Anim. Sci. 1994; 72: 2051-2060
        • Malmgren L.
        Experimentally induced testicular alterations in boars: Sperm morphology changes in mature and peripubertal boars.
        2508370
        Zentralbl. Veterinarmed. A. 1989; 36: 411-420
        • McNitt J.I.
        • First N.L.
        Effects of 72-hour heat stress on semen quality in boars.
        5508237
        Int. J. Biometeorol. 1970; 14: 373-380
        • Michell R.H.
        Inositol derivatives: Evolution and functions.
        Natl. Rev. 2008; 9: 151-161
        • NRC
        Nutrient Requirements of Swine.
        11th ed. Natl. Acad. Press, Washington, DC2012
        • Omtvedt I.T.
        • Nelson R.E.
        • Edwards R.L.
        • Stephens D.F.
        • Turman E.J.
        Influence of heat stress during early, mid and late pregnancy of gilts.
        5543028
        J. Anim. Sci. 1971; 32: 312-317
        • Patience J.F.
        • Umboh J.F.
        • Chaplin R.K.
        • Nyachoti C.M.
        Nutritional and physiological responses of growing pigs exposed to a diurnal pattern of heat stress.
        Livest. Prod. Sci. 2005; 96: 205-214
        • Pearce S.C.
        • Sanz-Fernandez M.V.
        • Hollis J.H.
        • Baumgard L.H.
        • Gabler N.K.
        Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs.
        25367514
        J. Anim. Sci. 2014; 92: 5444-5454
        • Pruneda A.
        • Yeung C.-H.
        • Bonet S.
        • Pinart E.
        • Cooper T.G.
        Concentrations of carnitine, glutamate and myo-inositol in epididymal fluid and spermatozoa from boars.
        16488563
        Anim. Reprod. Sci. 2007; 97: 344-355
        • Roy B.
        • Baghel R.P.S.
        • Mohanty T.K.
        • Mondal G.
        Zinc and male reproduction in domestic animals: A review.
        Indian J. Anim. Sci. 2013; 30: 339-350
        • Roy K.R.
        • Collier R.J.
        Regulation of acclimation to environmental stress. Pages 49–63 in Environmental Physiology of Livestock.
        in: Collier R.J. Collier J.L. 1st ed. Wiley-Blackwell, Hoboken, NJ2012
        • Russo S.
        • Dosio A.
        • Graversen R.G.
        • Sillmann J.
        • Carrao H.
        • Dunbar M.B.
        • Singleton A.
        • Montagna P.
        • Barbola P.
        • Vogt J.V.
        Magnitude of extreme heat waves in present climate and their projection in a warming world.
        J. Geophys. Res. Atmos. 2014; 119: 12500-12512
        • Selle P.H.
        • Ravindran V.
        • Caldwell R.A.
        • Bryden W.L.
        Phytate and phytase: Consequences for protein utilisation.
        Nutr. Res. Rev. 2000; 13: 225-278
        • St-Pierre N.R.
        • Cobanov B.
        • Schnitkey G.
        Economic losses from heat stress by US livestock industries.
        J. Dairy Sci. 2003; 86: E52-E77
        • Stewart K.R.
        • Bradley C.L.
        • Wilcock P.
        • Domingues F.
        • Kleve-Feld M.
        • Hundley J.
        • Cabezon F.A.
        Superdosing phytase fed to mature boars improves semen concentration and reproductive efficiency.
        Prof. Anim. Sci. 2018; 34: 95-102
        • Stone B.
        Heat induced infertility of boars: The inter-relationship between depressed sperm output and fertility and an estimation of the critical air temperature above which sperm output is impaired.
        Anim. Reprod. Sci. 1982; 4: 283-299
        • Strange K.
        • Morrison R.
        • Heilig C.W.
        • DiPietro S.
        • Gullans S.R.
        Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells.
        Am. J. Physiol. 1991; 260: C784-C790
        • Tompkins E.C.
        • Heidenreich C.J.
        • Stob M.
        Effect of post-breeding thermal stress on embryonic mortality in swine.
        J. Anim. Sci. 1967; 26: 377-380
        • van Wettere W.H.
        • Herde P.
        • Hughes P.E.
        Supplementing sow gestation diets with betaine during summer increases litter size of sows with greater numbers of parities.
        22607771
        Anim. Reprod. Sci. 2012; 132: 44-49
        • Walk C.L.
        • Santos T.T.
        • Bedford M.R.
        Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers.
        Poult. Sci. 2014; 93: 1172-1177
        • Walk C.L.
        • Srinongkote S.
        • Wilcock P.
        Influence of a microbial phytase and zinc oxide on young pig growth performance and serum minerals.
        23100571
        J. Anim. Sci. 2013; 91: 286-291
        • Wettemann R.P.
        • Desjardins C.
        Testicular function in boars exposed to elevated ambient temperature.
        454734
        Biol. Reprod. 1979; 20: 235-241
        • Wettemann R.P.
        • Wells M.E.
        • Johnson R.K.
        Reproductive characteristics of boars during and after exposure to increased ambient-temperature.
        J. Anim. Sci. 1979; 49: 1501-1505
        • Wettemann R.P.
        • Wells M.E.
        • Omtvedt I.T.
        • Pope C.E.
        • Turman E.J.
        Influence of elevated ambient temperature on reproductive performance of boars.
        1262278
        J. Anim. Sci. 1976; 42: 664-669
        • Zhang M.
        • Zhang H.
        • Li H.
        • Lai F.
        • Li X.
        • Tang Y.
        • Min T.
        • Wu H.
        Antioxidant mechanism of betaine without free radical scavenging ability.
        27677203
        J. Agric. Food Chem. 2016; 64: 7921-7930