ABSTRACT
Objective
Materials and Methods
Results and Discussion
Implications and Applications
Key words
INTRODUCTION
MATERIALS AND METHODS
Nutrient Concentration and Fiber Digestibility Determination
- Lopes F.
- Cook D.E.
- Combs D.K.
Outcome | Whole plant | Leaves | Stalk | Hemp flower | Seed heads | Chaff | Extracted flower |
---|---|---|---|---|---|---|---|
DM, % | 70.3 | 88.9 | 64.8 | 90.9 | 89.8 | 92.9 | 96.6 |
CP, % DM | 6.9 | 13.0 | 5.3 | 21.2 | 23.0 | 20.0 | 24.5 |
Available CP, % of DM | 5.4 | 10.5 | 3.5 | 17.1 | 20.3 | 17.6 | 21.4 |
Calcium, % of DM | 1.4 | 4.3 | 1.0 | 2.3 | 2.6 | 5.7 | 3.6 |
Phosphorus, % of DM | 0.3 | 0.4 | 0.3 | 1.1 | 0.7 | 0.4 | 0.4 |
Magnesium, % of DM | 0.2 | 0.5 | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 |
Potassium, % of DM | 1.1 | 3.3 | 0.9 | 2.4 | 1.3 | 1.9 | 2.4 |
Sulfur, % of DM | 0.1 | 0.4 | 0.1 | 0.4 | 0.3 | 0.2 | 0.3 |
Fat, % of DM | 2.7 | 8.9 | 1.2 | 12.5 | 13.2 | 4.6 | 3.2 |
Ash, % of DM | 8.8 | 21.2 | 6.3 | 14.1 | 16.6 | 24.9 | 25.7 |
Sugar, % of DM | 2.7 | 5.9 | 2.0 | 5.0 | 2.8 | 6.3 | 4.7 |
Starch, % of DM | 0.2 | 0.9 | 0.1 | 0.7 | 0.7 | 1.2 | 0.6 |
ADF, % of DM | 60.8 | 20.8 | 64.6 | 26.1 | 29.6 | 18.0 | 18.1 |
NDF, % of DM | 81.6 | 44.7 | 84.4 | 52.5 | 53.2 | 27.9 | 30.9 |
Acid detergent insoluble CP, % of DM | 1.5 | 2.5 | 1.8 | 4.2 | 2.7 | 2.4 | 3.1 |
Acid detergent insoluble CP, % of CP | 21.9 | 19.1 | 34.6 | 19.6 | 11.8 | 11.8 | 12.8 |
Neutral detergent insoluble CP, % of DM | 2.6 | 4.0 | 2.6 | 6.6 | 3.8 | 3.7 | 4.5 |
NDF digestibility at 30 h, % of NDF | 28.8 | 9.3 | 12.7 | 19.3 | 43.1 | 46.6 | 19.7 |
NDF digestibility at 240 h, % of NDF | 32.0 | 12.4 | 28.1 | 30.4 | 58.9 | 48.9 | 39.6 |
In vitro rumen NDF at 30 h, % of DM | 55.5 | 39.2 | 60.7 | 36.6 | 21.9 | 14.3 | 18.7 |
In vitro rumen NDF at 240 h, % of DM | 58.1 | 40.6 | 73.7 | 42.4 | 30.3 | 14.9 | 24.8 |
Nonfiber carbohydrate, % | 2.5 | 15.3 | 5.3 | 6.3 | — | 26.3 | 20.2 |
TDN, % | 24.0 | 41.0 | 19.8 | 53.6 | 61.5 | 54.3 | 46.0 |
Cannabinoid Concentration Determination
Zhang, X., J. P. Danaceau, and E. E. Chambers. 2016. Quantitative Analysis of THC and its Metabolites in Plasma Using Oasis PRiME HLB for Toxicology and Forensic Laboratories. Water Inc. Application Note APNT134916779. Accessed Apr. 10, 2020. https://www.waters.com/waters/library.htm?locale=en_US&lid=134916779.
RESULTS AND DISCUSSION
Cannabinoid | LLOQ | Plant sample | ||||||
---|---|---|---|---|---|---|---|---|
Whole plant | Leaves | Stalks | Hemp flower | Seed heads | Cleanings | Extracted flower | ||
Cannabinol, μg/g | 0.1 | 9 | 31 | 4 | 27 | 11 | 7 | 21 |
Δ9-Tetrahydrocannabinol, μg/g | 0.1 | 186 | 573 | 31 | 664 | 275 | 158 | 301 |
Δ9-Tetrahydrocannabinolic acid A, μg/g | 0.25 | 626 | 4,609 | 119 | 3,379 | 1,228 | 458 | 16 |
Δ8-Tetrahydrocannabinol, μg/g | 0.1 | ND | ND | ND | ND | ND | ND | ND |
Cannabichromene, μg/g | 0.1 | 192 | 417 | 49 | 513 | 68 | 140 | ND |
Cannabidiol, μg/g | 0.25 | 721 | 3,347 | 132 | 3,509 | 262 | 463 | 8,062 |
Tetrahydrocannabivarin, μg/g | 0.25 | 30 | 2 | ND | 1 | 303 | 2 | ND |
Cannabidiolic acid, μg/g | 0.1 | 4,870 | 36,920 | 1,705 | 32,900 | 3,184 | 5,309 | 1,960 |
Cannabigerolic acid, μg/g | 0.5 | 519 | 1,788 | 362 | 1938 | 285 | 654 | 154 |
Cannabichromenic, μg/g | 0.5 | 851 | 4,041 | 500 | 2,916 | 411 | 663 | ND |
Cannabigerol, μg/g | 0.1 | 67 | 293 | 28 | 230 | 23 | 79 | ND |
- McGrath S.
- Bartner L.R.
- Rao S.
- Packer R.A.
- Gustafson D.L.
- Schaefer N.
- Wojtyniak J.G.
- Kettner M.
- Schlote J.
- Laschke M.W.
- Ewald A.H.
- Lehr T.
- Menger M.D.
- Maurer H.H.
- Schmidt P.H.
- Schaefer N.
- Kettner M.
- Laschke M.W.
- Schlote J.
- Ewald A.H.
- Menger M.D.
- Maurer H.H.
- Schmidt P.H.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
AOAC. 1990. Official Methods of Analysis. 15th ed. Assoc. Off. Anal. Chem., Arlington, VA.
- Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L)..https://doi.org/10.3389/fpls.2019.00736Front. Plant Sci. 2019; 10: 736
- Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis..https://doi.org/10.3168/jds.2012-5932J. Dairy Sci. 2013; 96: 533-550
- Pharmacokinetics, safety, and clinical efficacy of cannabidiol treatment in osteoarthritic dogs..https://doi.org/10.3389/fvets.2018.00165Front. Vet. Sci. 2018; 5: 165
- Modification of a rumen fluid priming technique for measuring in vitro neutral detergent fiber digestibility..https://doi.org/10.3168/jds.2008-1745J. Dairy Sci. 2009; 92: 3842-3848
- Genotype × environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA..https://doi.org/10.1002/aocs.12291J. Am. Oil Chem. Soc. 2019; 96: 1417-1425
- Validation of an in vitro model for predicting rumen and total-tract fiber digestibility in dairy cows fed corn silages with different in vitro neutral detergent fiber digestibilities at 2 levels of dry matter intake..https://doi.org/10.3168/jds.2014-8661J. Dairy Sci. 2015; 98: 574-585
- Randomized blinded controlled clinical trial to assess the effect of oral cannabidiol administration in addition to conventional antiepileptic treatment on seizure frequency in dogs with intractable idiopathic epilepsy..https://doi.org/10.2460/javma.254.11.1301J. Am. Vet. Med. Assoc. 2019; 254: 1301-1308
NASEM (National Academies of Sciences, Engineering, and Medicine). 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. 10.17226/9825.
NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Nutrient Requirements of Beef Cattle. 8th rev. ed. Natl. Acad. Press, Washington, DC. 10.17226/19014.
- Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps..https://doi.org/10.3389/fpls.2019.01265Front. Plant Sci. 2019; 10: 1265
- Distribution of synthetic cannabinoids JWH-210, RCS-4 and Δ 9-tetrahydrocannabinol after intravenous administration to pigs..https://doi.org/10.2174/1570159X15666161111114214Curr. Neuropharmacol. 2017; 15: 713-723
- Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology..https://doi.org/10.1016/j.toxlet.2016.04.021Toxicol. Lett. 2016; 253: 7-16
Small, E., and D. Marcus. 2002. Hemp: A new crop with new uses for North America. Pages 284–326 in Trends in New Crops and New Uses. J. Janick and A. Whipkey, ed. ASHS Press, Alexandria, VA.
- Establishment of a domestic hemp production program, final rule. 7CFR Part 990..Fed. Resist. 2019; 84: 58522-58564
Zhang, X., J. P. Danaceau, and E. E. Chambers. 2016. Quantitative Analysis of THC and its Metabolites in Plasma Using Oasis PRiME HLB for Toxicology and Forensic Laboratories. Water Inc. Application Note APNT134916779. Accessed Apr. 10, 2020. https://www.waters.com/waters/library.htm?locale=en_US&lid=134916779.
Article info
Publication history
Footnotes
One author has served as a consultant for Intervet-Schering Plough Animal Health (now Merck Animal Health), Bayer Animal Health, Boehringer-Ingelheim Vetmedica, Zoetis Animal Health, and Norbrook Laboratories Ltd. The other authors declare no conflicts of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy