ABSTRACT
Purpose
Sources
Synthesis
Conclusions and Applications
Key words
INTRODUCTION
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
- Place S.E.
- Mitloehner F.M.
Rogeli, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M. V. Vilariño. 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, ed. World Meteorol. Org., Geneva, Switzerland.
IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J. C. Minx, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
- Alemu A.W.
- Janzen H.
- Little S.
- Hao X.
- Thompson D.J.
- Baron V.
- Iwaasa A.
- Beauchemin K.A.
- Kröbel R.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
SOURCES OF METHANE EMISSIONS
Enteric Methanogenesis

- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Regional Emissions
- Herrero M.
- Havlik P.
- Valin H.
- Notenbaert A.
- Rufino M.C.
- Thornton P.K.
- Blummel M.
- Weiss F.
- Grace D.
- Obersteiner M.
- Herrero M.
- Havlik P.
- Valin H.
- Notenbaert A.
- Rufino M.C.
- Thornton P.K.
- Blummel M.
- Weiss F.
- Grace D.
- Obersteiner M.
- Herrero M.
- Havlik P.
- Valin H.
- Notenbaert A.
- Rufino M.C.
- Thornton P.K.
- Blummel M.
- Weiss F.
- Grace D.
- Obersteiner M.
- Herrero M.
- Havlik P.
- Valin H.
- Notenbaert A.
- Rufino M.C.
- Thornton P.K.
- Blummel M.
- Weiss F.
- Grace D.
- Obersteiner M.
QUANTIFICATION METHODS
Sulfur Hexafluoride Tracer Technique
GreenFeed Emission Measurement System
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.
- Weeks H.
- Zimmerman P.R.
- Harper M.T.
- Hristova R.A.
- Zimmerman R.S.
- Branco A.F.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.
- Weeks H.
- Zimmerman P.R.
- Harper M.T.
- Hristova R.A.
- Zimmerman R.S.
- Branco A.F.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.
- Weeks H.
- Zimmerman P.R.
- Harper M.T.
- Hristova R.A.
- Zimmerman R.S.
- Branco A.F.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.
- Weeks H.
- Zimmerman P.R.
- Harper M.T.
- Hristova R.A.
- Zimmerman R.S.
- Branco A.F.
- Hammond K.J.
- Crompton L.A.
- Bannink A.
- Dijkstra J.
- Yáñez-Ruiz D.R.
- O’Kiely P.
- Kebreab E.
- Eugène M.A.
- Yu Z.
- Shingield K.J.
- Schwarm A.
- Hristov A.N.
- Reynolds C.K.
- Hammond K.J.
- Humphries D.J.
- Crompton L.A.
- Green C.
- Reynolds C.K.
- Hammond K.J.
- Humphries D.J.
- Crompton L.A.
- Green C.
- Reynolds C.K.
Portable Accumulation Chambers
- Hammond K.J.
- Crompton L.A.
- Bannink A.
- Dijkstra J.
- Yáñez-Ruiz D.R.
- O’Kiely P.
- Kebreab E.
- Eugène M.A.
- Yu Z.
- Shingield K.J.
- Schwarm A.
- Hristov A.N.
- Reynolds C.K.
- Hammond K.J.
- Crompton L.A.
- Bannink A.
- Dijkstra J.
- Yáñez-Ruiz D.R.
- O’Kiely P.
- Kebreab E.
- Eugène M.A.
- Yu Z.
- Shingield K.J.
- Schwarm A.
- Hristov A.N.
- Reynolds C.K.
- Hammond K.J.
- Crompton L.A.
- Bannink A.
- Dijkstra J.
- Yáñez-Ruiz D.R.
- O’Kiely P.
- Kebreab E.
- Eugène M.A.
- Yu Z.
- Shingield K.J.
- Schwarm A.
- Hristov A.N.
- Reynolds C.K.
Micrometeorological Techniques
- Flesch T.K.
- Basarab J.A.
- Baron V.S.
- Wilson J.D.
- Hu N.
- Tomkins N.W.
- Ohama A.J.
- Flesch T.K.
- Basarab J.A.
- Baron V.S.
- Wilson J.D.
- Hu N.
- Tomkins N.W.
- Ohama A.J.
MITIGATION OF METHANE IN GRAZING ENVIRONMENTS
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Carvalho P.C.
- Peterson C.A.
- Nunes P.A.A.
- Martins A.P.
- de Souza Filho W.S.
- Bertolazi V.T.
- Kunrath T.R.
- Moraes A.
- Anghinoni I.
Managing the Forage Base
Forage Quality.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Grazing Management.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Savian J.V.
- Schons R.M.T.
- Marchi D.E.
- Freitas T.S.D.
- da Silva Neto G.F.
- Mezzalira J.C.
- Berndt A.
- Bayer C.
- Savian J.V.
- Neto A.B.
- de David D.B.
- Bremm C.
- Schons R.M.T.
- Genro T.C.M.
- do Amaral G.A.
- Gere J.
- McManus C.M.
- Bayer C.
- de Faccio Carvalho P.C.
- Savian J.V.
- Schons R.M.T.
- Marchi D.E.
- Freitas T.S.D.
- da Silva Neto G.F.
- Mezzalira J.C.
- Berndt A.
- Bayer C.
Forage Secondary Compounds.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Mitigation Strategies Directed Toward Animals
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Supplementation.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Carvalho P.C.
- Fiorentini G.
- Berndt A.
- Castagnino P.S.
- Messana J.D.
- Frighetto R.T.S.
- Reis R.A.
- Berchielli T.T.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Place, S. E., K. R. Stackhouse, Q. Wang, and F. M. Mitloehner. 2011. Mitigation of greenhouse gas emissions from U. S. beef and dairy production systems. Pages 443–457 in Understanding Greenhouse Gas Emissions from Agricultural Management. L. Guo, A. Gunasekara, and L. McConnell, ed. ACS Symp. Series, Washington, DC.
- Grainger C.
- Auldist M.J.
- Clarke T.
- Beauchemin K.A.
- McGinn S.M.
- Hannah M.C.
- Eckard R.J.
- Lowe L.B.
- Grainger C.
- Auldist M.J.
- Clarke T.
- Beauchemin K.A.
- McGinn S.M.
- Hannah M.C.
- Eckard R.J.
- Lowe L.B.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Roque B.M.
- Brooke C.G.
- Ladau J.
- Polley T.
- Marsh L.J.
- Najafi N.
- Pandey P.
- Singh L.
- Kinley R.
- Salwen J.K.
- Eloe-Fadrosh E.
- Kebreab E.
- Hess M.
- Roehe R.
- Dewhurst R.J.
- Duthie C.
- Rooke J.A.
- McKain N.
- Ross D.W.
- Hyslop J.J.
- Waterhouse A.
- Freeman T.C.
- Watson M.
- Wallace R.J.
- Roehe R.
- Dewhurst R.J.
- Duthie C.
- Rooke J.A.
- McKain N.
- Ross D.W.
- Hyslop J.J.
- Waterhouse A.
- Freeman T.C.
- Watson M.
- Wallace R.J.
- Jonker A.
- Hickey S.M.
- Rowe S.J.
- Janssen P.H.
- Shackell G.H.
- Elmes S.
- Bain W.E.
- Wing J.
- Greer G.J.
- Bryson B.
- MacLean S.
- Dodds K.G.
- Pinares-Patiño C.S.
- Young E.A.
- Knowler K.
- Pickering N.K.
- McEwan J.
- Maciel I.C.F.
- Barbosa F.A.
- Tomich T.R.
- Ribeiro L.G.P.
- Alvarenga R.C.
- Lopes L.S.
- Malacco V.M.R.
- Rowntree J.E.
- Thompson L.R.
- Lana A.M.Q.
- Maciel I.C.F.
- Barbosa F.A.
- Tomich T.R.
- Ribeiro L.G.P.
- Alvarenga R.C.
- Lopes L.S.
- Malacco V.M.R.
- Rowntree J.E.
- Thompson L.R.
- Lana A.M.Q.
- McDonnell R.P.
- Hart K.J.
- Boland T.M.
- Kelly A.K.
- McGee M.
- Kenny D.A.
- McDonnell R.P.
- Hart K.J.
- Boland T.M.
- Kelly A.K.
- McGee M.
- Kenny D.A.
- Flay H.E.
- Kuhn-Sherlock B.
- MacDonald K.A.
- Camara M.
- Lopez-Villalobos N.
- Donaghy D.J.
- Roche J.R.
- Lawrence P.
- Kenny D.A.
- Earley B.
- Crews Jr., D.H.
- McGee M.
Vaccination Against Methanogens.
- Wedlock D.N.
- Pedersen G.
- Denis M.
- Dey D.
- Janssen P.H.
- Buddle B.M.
Soil Methanotrophy
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
- Smith K.A.
- Dobbie K.E.
- Ball B.C.
- Bakken L.R.
- Sitaula B.K.
- Hansen S.
- Brumme R.
- Borken W.
- Christensen S.
- Prieme A.
- Fowler D.
- Macdonald J.A.
- Skiba U.
- Klemedtsson L.
- Kasimir-Klemedtsson A.
- Degorska A.
- Orlanski P.
- Smith K.A.
- Dobbie K.E.
- Ball B.C.
- Bakken L.R.
- Sitaula B.K.
- Hansen S.
- Brumme R.
- Borken W.
- Christensen S.
- Prieme A.
- Fowler D.
- Macdonald J.A.
- Skiba U.
- Klemedtsson L.
- Kasimir-Klemedtsson A.
- Degorska A.
- Orlanski P.
Saggar, S., K. Tate, C. B. Hedley, and A. Carran. 2004. Methane emissions from cattle dung and methane consumption in New Zealand grazed pastures. Pages 102–106 in Proceedings of the Workshop on the Science of Atmospheric Trace Gases. NIWA Technical Report 125. T. S. Clackson, ed. Natl. Inst. Water Atmos. Res., Wellington, New Zealand.
Carbon Accounting
Rogeli, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M. V. Vilariño. 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, ed. World Meteorol. Org., Geneva, Switzerland.
Rogeli, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M. V. Vilariño. 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, ed. World Meteorol. Org., Geneva, Switzerland.
IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J. C. Minx, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
- Alemu A.W.
- Janzen H.
- Little S.
- Hao X.
- Thompson D.J.
- Baron V.
- Iwaasa A.
- Beauchemin K.A.
- Kröbel R.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
APPLICATIONS: CURRENT AND FUTURE
ACKNOWLEDGMENTS
LITERATURE CITED
- Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment..https://doi.org/10.1016/j.agsy.2017.08.003Agric. Syst. 2017; 158: 1-13
- A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation..https://doi.org/10.1038/s41612-018-0026-8NPJ Clim. Atmos. Sci. 2018; 1: 16
- Comparison of methane production between C3 and C4 grasses and legumes..https://doi.org/10.1016/j.anifeedsci.2011.04.003Anim. Feed Sci. Technol. 2011; 166–167: 59-64
- Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle..https://doi.org/10.2527/2001.79112805x11768108J. Anim. Sci. 2001; 79: 2805-2811
- C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2..https://doi.org/10.1111/j.1365-2486.2004.00833.xGlob. Change Biol. 2004; 10: 1565-1575
- Nutritional management for enteric methane abatement: A review..https://doi.org/10.1071/EA07199Aust. J. Exp. Agric. 2008; 48: 21-27
- Dietary mitigation of enteric methane from cattle..https://doi.org/10.1079/PAVSNNR20094035Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009; 35: 1-18
- Whole cottonseed supplementation improves performance and reduces methane emission intensity of grazing beef steers..https://doi.org/10.15232/pas.2018-01722Prof. Anim. Sci. 2018; 34: 339-345
- Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle..https://doi.org/10.1016/j.anifeedsci.2019.114210Anim. Feed Sci. Technol. 2019; 254: 114210
- Ionophores: Their effect on production efficiency and mode of action..https://doi.org/10.2527/jas1984.5861465x6378864J. Anim. Sci. 1984; 58: 1465-1483
- The utilization of the energy of different rations by sheep and cattle for maintenance and for fattening..https://doi.org/10.1017/S002185960001515XJ. Agric. Sci. 1964; 63: 113-128
- Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review..https://doi.org/10.4141/A03-109Can. J. Anim. Sci. 2004; 84: 319-335
- Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique..https://doi.org/10.4141/A01-017Can. J. Anim. Sci. 2002; 82: 201-206
- Effects of grain supplementation on methane production of grazing steers using the sulphur (SF6) tracer gas technique..https://doi.org/10.4141/A01-038Can. J. Anim. Sci. 2002; 82: 151-157
- Strategies to reduce methane emissions from farmed ruminants grazing on pasture..https://doi.org/10.1016/j.tvjl.2010.02.01920347354Vet. J. 2011; 188: 11-17
- Ionophore effects on composition of growth and digestive tract fill in grazing cattle..https://doi.org/10.4141/cjas84-189Can. J. Anim. Sci. 1984; 64: 130-131
- Ionophores: Their use as ruminant growth promotants and impact on food safety..14503688Curr. Issues Intest. Microbiol. 2003; 4: 43-51
- Performance and methane emissions of Nellore steers grazing tropical pasture supplemented with lipid sources..https://doi.org/10.1590/s1806-92902016001200005Rev. Bras. Zootec. 2016; 45: 760-767
- Animal production and soil characteristics from integrated crop-livestock systems: Toward sustainable intensification..https://doi.org/10.1093/jas/sky08529917103J. Anim. Sci. 2018; 96: 3513-3525
- Influence of energy supplementation on grazing ruminants: Requirements and responses..https://doi.org/10.2527/1997.752533x9051477J. Anim. Sci. 1997; 75: 533-542
- Enteric methane from lactating beef cows managed with high- and low-input grazing systems..https://doi.org/10.2527/jas.2014-812826020913J. Anim. Sci. 2015; 93: 1365-1375
- Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa..https://doi.org/10.2527/jas.2013-649823942711J. Anim. Sci. 2013; 91: 4861-4874
- Applicability of eddy covariance to estimate methane emissions from grazing cattle..https://doi.org/10.2134/jeq2017.02.008429415102J. Environ. Qual. 2018; 47: 54-61
- Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects..https://doi.org/10.1071/EA07249Anim. Prod. Sci. 2008; 48: 260-264
- Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements..https://doi.org/10.1017/S175173111500167626301870Animal. 2015; 9: 1949-1957
- Methane emissions from sheep pasture, measured with an open-path eddy covariance system..https://doi.org/10.1111/j.1365-2486.2011.02466.xGlob. Change Biol. 2011; 17: 3524-3533
- Methane emissions of beef cattle on forages..10.2134/jeq2003.269012549566J. Environ. Qual. 2003; 32: 269-277
- Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol..Appl. Enivorn. Microbiol. 1995; 61: 3129-3135
EPA. 2019. Inventory of U. S. Greenhouse Gas Emissions and Sinks: 1990–2014. EPA 430-R-19-001. Environ. Prot. Agency, Washington, DC.
FAO. 2013. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. Food Agric. Org. United Nations, Rome, Italy.
FAO. 2016. Environmental Performance of Large Ruminant Supply Chains: Guidelines for Assessment Livestock Environmental Assessment and Performance Partnership. Food Agric. Org. United Nations, Rome, Italy.
- Hot topic: Selecting cattle for low residual feed intake did not affect daily methane production but increased methane yield..https://doi.org/10.3168/jds.2018-1523430639015J. Dairy Sci. 2019; 102: 2708-2713
- Methane emissions from cattle grazing under diverse conditions: An examination of field configurations appropriate for line-averaging sensors..https://doi.org/10.1016/j.agrformet.2017.10.012Agric. Meteorol. 2018; 258: 8-17
Gerber, P. J., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, and G. Tempio. 2013. Tackling Climate Change Through Livestock—A global Assessment of Emissions and Mitigation Opportunities. Food Agric. Org. United Nations (FAO), Rome, Italy.
- Estimates of repeatability and heritability of methane production in sheep using portable accumulation chambers..https://doi.org/10.1071/AN13370Anim. Prod. Sci. 2016; 56: 116-122
- Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep..https://doi.org/10.1016/j.anifeedsci.2011.04.012Anim. Feed Sci. Technol. 2011; 166–167: 219-226
- Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grain..https://doi.org/10.3168/jds.2007-031918292272J. Dairy Sci. 2008; 91: 1159-1165
- Can enteric methane emissions from ruminants be lowered without lowering their production?.https://doi.org/10.1016/j.anifeedsci.2011.04.021Anim. Feed Sci. Technol. 2011; 166–167: 308-320
- Supplementation with whole cotton seed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet..https://doi.org/10.3168/jds.2009-288820494170J. Dairy Sci. 2010; 93 (a): 2612-2619
- A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain..https://doi.org/10.3168/jds.2010-315420965346J. Dairy Sci. 2010; 93 (b): 5300-5308
- Measuring the respiratory gas exchange by grazing cattle using an automated, open-circuit gas quantification system..https://doi.org/10.1093/tas/txx009Transl. Anim. Sci. 2018; 2: 11-18
- Influence of sampling time of carbon dioxide and methane emissions by grazing cattle..Proc. West. Sect. Am. Soc. Anim. Sci. 2015; 66: 201-203
- Technical Note: Effect of bait delivery interval in an automated head-chamber system on respiration gas estimates when cattle are grazing rangeland..https://doi.org/10.15232/pas.2016-01593Prof. Anim. Sci. 2017; 33: 490-497
- Review of current in vivo measurement techniques for quantifying enteric methane emissions from ruminants..https://doi.org/10.1016/j.anifeedsci.2016.05.018Anim. Feed Sci. Technol. 2016; 219: 13-30
- Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer..https://doi.org/10.1016/j.anifeedsci.2015.02.008Anim. Feed Sci. Technol. 2015; 203: 41-52
- Micrometeorological techniques for measurement of enteric greenhouse gas emissions..https://doi.org/10.1016/j.anifeedsci.2011.04.013Anim. Feed Sci. Technol. 2011; 166–167: 227-239
- A study of soil methane sink regulation in two grasslands exposed to drought and N fertilization..https://doi.org/10.1007/s11104-010-0690-xPlant Soil. 2011; 342: 265-275
- Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle..https://doi.org/10.2527/jas.2015-007827065252J. Anim. Sci. 2016; 94: 902-908
- Greenhouse-gas emissions of beef finishing systems in the southern High Plains..https://doi.org/10.1016/j.agsy.2019.102674Agric. Syst. 2019; 176: 102674
- Applicability of short-term emission measurements for on-farm quantification of enteric methane..https://doi.org/10.1017/S175173111300083923739481Animal. 2013; 7: 401-408
- Cattle selected for lower residual feed intake have reduced daily methane production..https://doi.org/10.2527/jas.2006-23617296777J. Anim. Sci. 2007; 85: 1479-1486
- Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems..https://doi.org/10.1073/pnas.130814911024344273Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 20888-20893
- Review: Measuring methane production from ruminants..10.1016/j.tibtech.2015.10.004Trends Biotechnol. 2016; 34: P26-P35
Hogan, J. P. 1982. Digestion and utilization of proteins. Pages 245–257 in Nutritional Limits to Animal Production from Pastures. J. B. Hacker, ed. Commonwealth Agric. Bureaux, Slough, UK.
- Methanogens: Methane producers of the rumen and mitigation strategies..https://doi.org/10.1155/2010/94578521253540Archaea. 2010; 2010: 1-11
- Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States..https://doi.org/10.2527/jas.2011-453922178852J. Anim. Sci. 2012; 90: 1371-1375
- Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options..https://doi.org/10.2527/jas.2013-658324045497J. Anim. Sci. 2013; 91: 5045-5069
- The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals..https://doi.org/10.3791/5290426383886J. Vis. Exp. 2015; 103: e52904
- Enteric methane emission can be reliably measured by the GreenFeed monitoring unit..https://doi.org/10.1016/j.livsci.2019.01.017Livest. Sci. 2019; 222: 31-40
- Long-term effects of nitrogen-fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment..10.1016/0038-0717(93)90045-DSoil Biol. Biochem. 1993; 25: 1307-1315
- The role of plant secondary metabolites in mammalian herbivory: Ecological perspectives..https://doi.org/10.1079/PNS200441515877931Proc. Nutr. Soc. 2005; 64: 123-131
IPCC. 2006. IPCC Guidelines for Greenhouse Gas Inventories. Intergov. Panel Climate Change, Geneva, Switzerland.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J. C. Minx, ed. Cambridge Univ. Press, Cambridge, United Kingdom.
IPCC. 2019. Climate Change and Land 2019. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Accepted Draft. Intergov. Panel Climate Change, Geneva, Switzerland.
- Success of fat in dairy rations depends on the amount..Feedstuffs. 1997; 69: 11-12
- Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem..https://doi.org/10.2527/jas.2007-058818042812J. Anim. Sci. 2008; 86: 397-412
- Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique..https://doi.org/10.1021/es00051a02522176184Environ. Sci. Technol. 1994; 28: 359-362
- Methane emissions from cattle..https://doi.org/10.2527/1995.7382483x8567486J. Anim. Sci. 1995; 73: 2483-2492
- Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers..https://doi.org/10.1093/jas/sky18729741677J. Anim. Sci. 2018; 96: 3031-3042
- Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants..https://doi.org/10.2527/1995.7392774x8582870J. Anim. Sci. 1995; 73: 2774-2790
- Methane emissions from bison—An historic herd estimate for the North American Great Plains..https://doi.org/10.1016/j.agrformet.2009.11.019Agric. For. Meteorol. 2010; 150: 473-477
- Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions..https://doi.org/10.3168/jds.2013-723424746124J. Dairy Sci. 2014; 97: 3231-3261
- Invited Review: Applied nutrition of ruminants: Fermentation and digestive physiology..https://doi.org/10.15232/S1080-7446(15)30100-5Prof. Anim. Sci. 2014; 30: 129-139
- Effects of grazing diverse combinations of sainfoin, birdsfoot trefoil, and alfalfa on beef cow performance and environmental impacts..J. Anim. Sci. 2017; 95: 143-144
- Grass silage intake, rumen and blood variables, ultrasonic and body measurements, feeding behavior and activity in pregnant beef heifers differing in phenotypic residual feed intake..https://doi.org/10.2527/jas.2010-377421622881J. Anim. Sci. 2011; 89: 3248-3261
- Quantitative ruminant nutrition—A green science..https://doi.org/10.1071/AR9930363Aust. J. Agric. Res. 1993; 44: 363-380
- Asparagopsis taxiformis decreases enteric methane production in sheep..https://doi.org/10.1071/AN15883Anim. Prod. Sci. 2018; 58: 681-688
- Review: current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective..https://doi.org/10.1017/S175173111600144027406001Animal. 2017; 11: 274-284
- Beneficial effects of temperate forage legumes that contain condensed tannins..https://doi.org/10.3390/agriculture5030475Agriculture. 2015; 5: 475-491
- Dose-response effects of Asparagopsis taxiformis and Oedogoniumsp. on in vitro fermentation and methane production..https://doi.org/10.1007/s10811-015-0639-9J. Appl. Phycol. 2015; 28: 1443-1452
- Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system?.https://doi.org/10.1371/journal.pone.022024731348816PLoS One. 2019; 14: e0220247
- Energy and protein values of four forages including comparison between tropical temperate species..10.1071/EA9880729Aust. J. Exp. Agric. 1998; 128: 729-736
- Methane output and rumen microbiota in dairy cows in response to long-term supplementation with linseed or rapeseed of grass silage- or pasture-based diets..Proc. N.Z. Soc. Anim. Prod. 2011; 71: 242-247
Matches, A. G., and J. C. Burns. 1995. Systems of grazing management. Pages 179–192 in The Science of Grassland Agriculture. R. F. Barnes, D. A. Miller, and C. J. Nelson, ed. Iowa State Univ. Press, Ames.
- Redirecting rumen fermentation to reduce methanogenesis..https://doi.org/10.1071/EA07218Aust. J. Exp. Agric. 2008; 48: 7-13
- Methane production by steers on pasture..https://doi.org/10.4141/A96-137Can. J. Anim. Sci. 1997; 77: 519-524
- Impact of pasture type on methane production by lactating beef cows..https://doi.org/10.4141/A98-107Can. J. Anim. Sci. 1999; 79: 221-226
- Influence of cottonseed meal supplementation on voluntary intake, rumen fermentation and rate of passage of prairie hay in beef steers..https://doi.org/10.2527/jas1985.602570xJ. Anim. Sci. 1985; 60: 570-577
- Protein supplementation of grazing livestock: A review..https://doi.org/10.15232/S1080-7446(15)32251-8Prof. Anim. Sci. 1990; 6: 1-16
- Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets..https://doi.org/10.2527/jas.2015-008027065279J. Anim. Sci. 2016; 94: 1179-1193
- Developments in micrometeorological methods for methane measurements..https://doi.org/10.1017/S175173111300065723739479Animal. 2013; 7: 386-393
- Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle..https://doi.org/10.2134/jeq2006.005416899740J. Environ. Qual. 2006; 35: 1686-1691
- Micrometeorological methods for measuring methane emission reduction at beef cattle feedlots: Evaluation of 3-nitrooxypropanol feed additive..https://doi.org/10.2134/jeq2018.11.041231589722J. Environ. Qual. 2019; 48: 1454-1461
- The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review..https://doi.org/10.1016/S0377-8401(03)00041-5Anim. Feed Sci. Technol. 2003; 106: 3-19
- Methane production in dairy cows..https://doi.org/10.3168/jds.S0022-0302(79)83465-7J. Dairy Sci. 1979; 62: 1583-1586
- Mitigating agricultural emissions of methane..https://doi.org/10.1023/A:1005338731269Clim. Change. 1998; 40: 39-80
- Methane and nitrous oxide fluxes in native, fertilized, and cultivated grassland..https://doi.org/10.1038/350330a0Nature. 1991; 350: 330-332
- Methane production by ruminants—Literature review of I. Dietary manipulation to reduce methane production and II. Laboratory procedures for estimating methane potential of diets..Nutr. Abstr. Rev. 1994; 64 (Series B): 786-806
- Methane production by ruminants: Its contribution to global warming..10.1051/animres:2000119Ann. Zootech. 2000; 49: 231-253
- Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows..https://doi.org/10.3168/jds.2016-1091927497906J. Dairy Sci. 2016; 99: 7945-7955
- Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different—A modelling approach..https://doi.org/10.1371/journal.pone.022624331826000PLoS One. 2019; 14: e0226243
- Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide..https://doi.org/10.1007/s00442-016-3611-827038993Oecologia. 2016; 181: 919-930
- Long-term effects of feeding monensin on methane production in lactating dairy cows..https://doi.org/10.3168/jds.2006-70817369219J. Dairy Sci. 2007; 90: 1781-1788
- Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions..https://doi.org/10.1007/s10661-011-2090-y21547374Environ. Monit. Assess. 2012; 184: 1929-1952
- Greenhouse gas emissions from simulated beef and dairy livestock systems in the United States..https://doi.org/10.1023/A:1012657230589Nutr. Cycl. Agroecosyst. 2001; 60: 99-102
- Short-lived climate pollution..https://doi.org/10.1146/annurev-earth-060313-054843Annu. Rev. Earth Planet. Sci. 2014; 42: 341-379
- Methane emission by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity..https://doi.org/10.4141/A03-034Can. J. Anim. Sci. 2003; 83: 769-777
- Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle..https://doi.org/10.1016/j.agee.2006.03.024Agric. Ecosyst. Environ. 2007; 121: 30-46
- Heritability estimates of methane emissions from sheep..https://doi.org/10.1017/S175173111300086423739473Animal. 2013; 7: 316-321
- The SF6tracer technique for measurements of methane emission from cattle—Effect of tracer permeation rate..https://doi.org/10.4141/CJAS07117Can. J. Anim. Sci. 2008; 88: 309-320
- Invited review: Contemporary environmental issues: A review of the dairy industry’s role in climate change and air quality and the potential of mitigation through improved production efficiency..https://doi.org/10.3168/jds.2009-271920655409J. Dairy Sci. 2010; 93: 3407-3416
Place, S. E., K. R. Stackhouse, Q. Wang, and F. M. Mitloehner. 2011. Mitigation of greenhouse gas emissions from U. S. beef and dairy production systems. Pages 443–457 in Understanding Greenhouse Gas Emissions from Agricultural Management. L. Guo, A. Gunasekara, and L. McConnell, ed. ACS Symp. Series, Washington, DC.
- Postingestive feedback as an elementary determinant of food preference and intake in ruminants..https://doi.org/10.2307/4002498J. Range Manage. 1995; 48: 2-17
Provenza, F. D., and J. J. Villalba. 2006. Foraging in domestic herbivores: linking the internal and external milieu. Pages 210–240 in Feeding in Domestic Vertebrates: From Structure to Function. V. L. Bels, ed. CABI Publ., Oxfordshire, UK.
- Linking herbivore experience, varied diets, and plant biochemical diversity..https://doi.org/10.1016/S0921-4488(03)00143-3Small Rumin. Res. 2003; 49: 257-274
- Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis..https://doi.org/10.3168/jds.2012-592323769353J. Dairy Sci. 2013; 96: 5161-5173
- One-hour portable chamber methane measurements are repeatable and provide useful information on feed intake and efficiency..https://doi.org/10.2527/jas.2016-062027898840J. Anim. Sci. 2016; 94: 4376-4387
- Comparison of repeated measurements of methane production in sheep over 5 years and a range of measurement protocols..https://doi.org/10.2527/jas.2015-909226523556J. Anim. Sci. 2015; 93: 4637-4650
- Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance..https://doi.org/10.1371/journal.pgen.100584626891056PLoS Genet. 2016; 12: e1005846
Rogeli, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M. V. Vilariño. 2018. Mitigation pathways compatible with 1.5°C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, ed. World Meteorol. Org., Geneva, Switzerland.
- Effect of macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage..https://doi.org/10.1186/s42523-019-0004-4Anim. Microbiome. 2019; 1 (a): 3
- Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent..https://doi.org/10.1016/j.jclepro.2019.06.193J. Clean. Prod. 2019; 234 (b): 132-138
- Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas..https://doi.org/10.2527/jas.2014-880926020346J. Anim. Sci. 2015; 93: 2509-2519
- Environmental footprints of beef cattle production in the United States..https://doi.org/10.1016/j.agsy.2018.11.005Agric. Syst. 2019; 169: 1-13
- Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture..https://doi.org/10.1016/j.agee.2007.02.006Agric. Ecosyst. Environ. 2007; 122: 357-365
Saggar, S., K. Tate, C. B. Hedley, and A. Carran. 2004. Methane emissions from cattle dung and methane consumption in New Zealand grazed pastures. Pages 102–106 in Proceedings of the Workshop on the Science of Atmospheric Trace Gases. NIWA Technical Report 125. T. S. Clackson, ed. Natl. Inst. Water Atmos. Res., Wellington, New Zealand.
- Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: A review..https://doi.org/10.1007/s11104-007-9421-3Plant Soil. 2008; 309: 25-42
- Grazing intensity and stocking methods on animal production and methane emission by grazing sheep: Implications for integrated crop-livestock system..https://doi.org/10.1016/j.agee.2014.02.008Agric. Ecosyst. Environ. 2014; 190: 112-119
- Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep..https://doi.org/10.1016/j.jclepro.2018.03.162J. Clean. Prod. 2018; 186: 602-608
- Factors affecting methane production and mitigation in ruminants..https://doi.org/10.1111/j.1740-0929.2009.00687.x20163666Anim. Sci. J. 2010; 81: 2-10
- Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases..https://doi.org/10.1007/s10584-005-1146-9Clim. Change. 2005; 68: 281-302
- Effects of energy supplementation on energy losses and nitrogen balance of steers fed green-chopped wheat pasture I: Calorimetry..https://doi.org/10.2527/jas2017.141728727009J. Anim. Sci. 2017; 95: 2133-2143
- Beyond, milk, meat, and eggs. Role of livestock in food and nutrition security..https://doi.org/10.2527/af.2013-0002Anim. Front. 2013; 3: 6-13
- Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink..https://doi.org/10.1046/j.1365-2486.2000.00356.xGlob. Change Biol. 2000; 6: 791-803
- Carbon footprint and ammonia emissions of California beef production systems..https://doi.org/10.2527/jas.2011-465322952361J. Anim. Sci. 2012; 90: 4641-4655
- Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in midwestern USA beef finishing systems..https://doi.org/10.1016/j.agsy.2018.02.003Agric. Syst. 2018; 162: 249-258
- Methods for measuring and estimating methane emission from ruminants..https://doi.org/10.3390/ani202016026486915Animals (Basel). 2012; 2: 160-183
- Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen..https://doi.org/10.1016/j.vetimm.2015.02.00825782351Vet. Immunol. Immunopathol. 2015; 164: 201-207
- Methane emissions in grazing systems in grassland regions of China: A synthesis..https://doi.org/10.1016/j.scitotenv.2018.11.10230448656Sci. Total Environ. 2019; 654: 662-670
- Contribution of grazing to soil atmosphere CH4 exchange during the growing season in a continental steppe..https://doi.org/10.1016/j.atmosenv.2012.10.037Atmos. Environ. 2013; 67: 170-176
- The ruminal microbiome associated with methane emissions form ruminant livestock..https://doi.org/10.1186/s40104-017-0141-028123698J. Anim. Sci. Biotechnol. 2017; 8: 7
- The role of ruminants in reducing agriculture’s carbon footprint in North America..https://doi.org/10.2489/jswc.71.2.156J. Soil Water Conserv. 2016; 71: 156-164
- Drought and grazing patch dynamics under different grazing management..https://doi.org/10.1016/S0140-1963(03)00122-8J. Arid Environ. 2004; 58: 97-117
- Invited Review: A glimpse of the future in animal nutrition science. 1. Past and future challenges..https://doi.org/10.1590/s1806-92902017000500011Rev. Bras. Zootec. 2017; 46: 438-451
- An energy and monensin supplement reduces methane emission intensity of stocker cattle grazing winter wheat..https://doi.org/10.15232/aas.2018-01841Appl. Anim. Sci. 2019; 35: 433-440
- Global food demand and the sustainable intensification of agriculture..https://doi.org/10.1073/pnas.111643710822106295Proc. Natl. Acad. Sci. USA. 2011; 108: 20260-20264
- A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets..https://doi.org/10.1071/EA08223Anim. Prod. Sci. 2009; 49: 1053-1058
- Daily methane emissions and emission intensity of grazing beef cattle genetically divergent for residual feed intake..https://doi.org/10.1071/AN15111Anim. Prod. Sci. 2016; 57: 627-635
- Links between ruminants’ food preference and their welfare..https://doi.org/10.1017/S175173111000046722444619Animal. 2010; 4: 1240-1247
Vlaming, J. B. 2007. Quantifying variation in estimated methane emission from ruminants using the SF6 tracer technique. PhD Thesis. Animal Sci., Massey Univ., Palmerton North, New Zealand.
- Methanogenesis from forages fed to sheep..Proc. N.Z. Soc. Anim. Prod. 2002; 64: 161-171
- Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro..https://doi.org/10.1080/00480169.2010.6505820200573N. Z. Vet. J. 2010; 58: 29-36
- Phylogenetic analysis of methanogens from the bovine rumen..https://doi.org/10.1186/1471-2180-1-511384509BMC Microbiol. 2001; 1: 5
- A vaccine against rumen methanogens can alter the composition of archaeal populations..https://doi.org/10.1128/AEM.02453-0819201957Appl. Environ. Microbiol. 2009; 75: 1860-1866
- Methane oxidation in temperate soils: Effects of land use and the chemical form of nitrogen fertilizer..https://doi.org/10.1016/0045-6535(94)00416-RChemosphere. 1995; 30: 539-546