ABSTRACT
Purpose
Sources
Synthesis
Conclusions and Applications
Key words
INTRODUCTION
- Urie N.J.
- Lombard J.E.
- Shivley C.B.
- Kopral C.A.
- Adams A.E.
- Earleywine T.J.
- Olson J.D.
- Garry F.B.
- Urie N.J.
- Lombard J.E.
- Shivley C.B.
- Kopral C.A.
- Adams A.E.
- Earleywine T.J.
- Olson J.D.
- Garry F.B.
- Urie N.J.
- Lombard J.E.
- Shivley C.B.
- Kopral C.A.
- Adams A.E.
- Earleywine T.J.
- Olson J.D.
- Garry F.B.
- Harmsen H.J.
- Wildeboer-Veloo A.C.
- Raangs G.C.
- Wagendorp A.A.
- Klijn N.
- Bindels J.G.
- Welling G.W.
- Oikonomou G.
- Teixeira A.G.
- Foditsch C.
- Bichalho M.L.
- Machado V.S.
- Bicalho R.C.
- Maynou G.
- Migura-Garcia L.
- Subirats J.
- Chester-Jones H.
- Ziegler D.
- Bach A.
- Terre M.
- Van Vleck Pereira R.V.V.
- Lima S.
- Siler J.D.
- Foditsch C.
- Warnick L.D.
- Bicalho R.C.
PROBIOTICS
Live Yeast and Yeast Culture
Effects on Growth and Performance
Yeast | Effects in response to | Remark | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight gain | Feed efficiency | Health | Gut development | |||||||||
YC | ++ | NS | NS | NS | Fed in starter feed. | Lesmeister et al., 2004. | ||||||
SC | ++ | NS | ++ | n/a | Fed in starter. Increased starter intake. Fewer days with diarrhea. | Galvão et al., 2005.
Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli.. https://doi.org/10.1051/rnd:2005040 16045891 Reprod. Nutr. Dev. 2005; 45: 427-440 | ||||||
YC | NS | NS | n/a | + | Fed in starter feed. Improved rumen development. | Kaldmäe et al., 2008. | ||||||
YC | NS | NS | ++ | n/a | Fed grain feed. Reduced incidence of diarrhea and mortality rates. Tendency to improve neutrophil function. | Magalhães et al., 2008. | ||||||
SC and SCB | NS | NS | NS | n/a | Oral administration in sterile water twice daily. | Pinos-Rodríguez et al., 2008.
Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii 1079.. https://doi.org/10.1016/j.anifeedsci.2007.08.003 Anim. Feed Sci. Technol. 2008; 140: 223-232 | ||||||
LY | NS | NS | ++ | n/a | LY product fed in starter feed. Improved fecal scores. | Hill et al., 2009. | ||||||
YC | ++ | NS | n/a | n/a | YC fed in starter feed | Zhou et al., 2009. | ||||||
YC | NS | NS | n/a | + | Fed in starter feed. Improved microbial cellulolytic activity. | Hučko et al., 2009. | ||||||
YC | NS | NS | ++ | n/a | Fed in starter feed. Improved humoral response to vaccine challenge. Low replication to assess growth performance. | Kim et al., 2011. | ||||||
YC | ++ | NS | ++ | ++ | Fed in both MR and starter. Reduction in diarrhea. Improved rumen development and reduced pathogen intestinal colonization. | Brewer et al., 2014. | ||||||
YC | NS | NS | NS | n/a | SCB yeast culture fed with starter. | Huuskonen and Pesonen, 2015. | ||||||
SCB | NS | NS | NS | n/a | Fed in MR. Low incidence of diarrhea. | He et al., 2017. | ||||||
YC | n/a | n/a | n/a | +++ | Fed in starter. Increased rumen papillae length and increased villus height in all segments of the gastrointestinal tract. | Xiao et al., 2016.
Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.. https://doi.org/10.3168/jds.2015-10563 27157569 J. Dairy Sci. 2016; 99: 5401-5412 | ||||||
YC | NS | NS | + | + | Fed in MR or MR and starter. Increased starter intake when fed in both MR and starter. | Harris et al., 2017.
Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium.. https://doi.org/10.3168/jds.2016-12509 28734601 J. Dairy Sci. 2017; 100: 7154-7164 | ||||||
SCB | + | NS | ++ | n/a | Fed in MR. Lower incidence of severe diarrhea, and reduction of diarrhea treatments. | Villot et al., 2019. | ||||||
YC | NS | NS | NS | n/a | Fed in starter. No effects on gut permeability in diarrheic calves. | Pisoni and Relling, 2020. |

- Harris T.L.
- Liang Y.
- Sharon K.P.
- Sellers M.D.
- Yoon I.
- Scott M.F.
- Carroll J.A.
- Ballou M.A.
- Galvão K.N.
- Santos J.E.P.
- Coscioni A.
- Villaseñor M.
- Sischo W.M.
- Berge A.C.B.
- Xiao J.X.
- Alugongo G.M.
- Chung R.
- Dong S.Z.
- Li S.L.
- Yoon I.
- Wu Z.H.
- Cao Z.J.
- Harris T.L.
- Liang Y.
- Sharon K.P.
- Sellers M.D.
- Yoon I.
- Scott M.F.
- Carroll J.A.
- Ballou M.A.
- Xiao J.X.
- Alugongo G.M.
- Chung R.
- Dong S.Z.
- Li S.L.
- Yoon I.
- Wu Z.H.
- Cao Z.J.
Effects on Health
- Galvão K.N.
- Santos J.E.P.
- Coscioni A.
- Villaseñor M.
- Sischo W.M.
- Berge A.C.B.
- Harris T.L.
- Liang Y.
- Sharon K.P.
- Sellers M.D.
- Yoon I.
- Scott M.F.
- Carroll J.A.
- Ballou M.A.
- Xiao J.X.
- Alugongo G.M.
- Chung R.
- Dong S.Z.
- Li S.L.
- Yoon I.
- Wu Z.H.
- Cao Z.J.
- Harris T.L.
- Liang Y.
- Sharon K.P.
- Sellers M.D.
- Yoon I.
- Scott M.F.
- Carroll J.A.
- Ballou M.A.
- Kvidera S.K.
- Dickson M.J.
- Abuajamieh M.
- Snider D.B.
- Fernandez M.V.S.
- Johnson J.S.
- Keating A.F.
- Gorden P.J.
- Green H.B.
- Schoenberg K.M.
- Baumgard L.H.
- Villot C.
- Chen Y.
- Pedgerachny K.
- Chaucheyras-Durand F.
- Chevaux E.
- Skidmore A.
- Guan L.L.
- Steele M.A.
- Harris T.L.
- Liang Y.
- Sharon K.P.
- Sellers M.D.
- Yoon I.
- Scott M.F.
- Carroll J.A.
- Ballou M.A.
Bacterial-Based Probiotics
Lactic acid–producing bacteria | Effects in response to | Remark | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight gain | Feed efficiency | Health | Gut development | |||||||||
Multistrain LAB | ++ | NS | +++ | n/a | Four experiments were performed with a multistrain Lactobacillus probiotic. | Timmerman et al., 2005.
Health and growth of veal calves fed milk replacers with or without probiotics.. https://doi.org/10.3168/jds.S0022-0302(05)72891-5 15905445 J. Dairy Sci. 2005; 88: 2154-2165 | ||||||
Multistrain LAB | +++ | NS | +++ | n/a | 3 lactic acid–bacteria strains. | Frizzo et al., 2010. | ||||||
Multistrain LAB | NS | NS | NS | n/a | Follow-up study with the same 3 lactic acid bacteria, no effects found. | Frizzo et al., 2011.
Effect of lactic acid bacteria and lactose on growth performance and intestinal microbial balance of artificially reared calves.. https://doi.org/10.1016/j.livsci.2011.04.002 Livest. Sci. 2011; 140: 246-252 | ||||||
Multispecies BBP | n/a | n/a | +++ | n/a | Meta-analysis composed of 15 different experiments and 965 calves. | Signorini et al., 2012.
Impact of probiotic administration on the health and fecal microbiota of young calves: A meta-analysis of randomized controlled trials of lactic acid bacteria.. https://doi.org/10.1016/j.rvsc.2011.05.001 21620428 Res. Vet. Sci. 2012; 93: 250-258 | ||||||
Multistrain LAB | NS | ++ | ++ | n/a | Multispecies probiotic: Lactobacillus plantarum + Bacillus subtilis. | Zhang et al., 2016.
Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves.. https://doi.org/10.1111/jpn.12338 25916246 J. Anim. Physiol. Anim. Nutr. (Berl.). 2016; 100: 33-38 | ||||||
Lactobacillus rhamnosus | +++ | NS | ++ | ++ | Increase VFA production and microbial diversity. | Zhang et al., 2019. | ||||||
Multispecies BBP | NS | n/a | ++ | n/a | Multispecies probiotic bolus for the treatment of diarrhea. | Renaud et al., 2019. | ||||||
Multispecies BBP | +++ | n/a | n/a | n/a | Multispecies probiotic. 96 heifer calves fed with automated feeder. | Cantor et al., 2019. | ||||||
Multistrain LAB | ++ | n/a | NS | n/a | Improved final BW. | Bayatkouhsar et al., 2013.
Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves.. https://doi.org/10.1016/j.anifeedsci.2013.04.015 Anim. Feed Sci. Technol. 2013; 186: 1-11 | ||||||
Multispecies BBP | n/a | n/a | ++ | n/a | Improved cellular immunity. | Qadis et al., 2014. | ||||||
Bacillus spp. | n/a | n/a | ++ | n/a | Bacillus-based probiotic provided in electrolytes to scouring calves. Improved cellular and innate immunity. | Novak et al., 2012. | ||||||
Lactobacillus acidophilus | n/a | n/a | n/a | ++ | Improved gut bacterial community structure, reducing pathogenic load. | Fomenky et al., 2018.
Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves.. https://doi.org/10.1038/s41598-018-32375-5 30237565 Sci. Rep. 2018; 8: 14147 | ||||||
Multispecies BBP | ++ | ++ | NS | n/a | Improved milk intake, ADG, and feed efficiency. | Soto et al., 2014. | ||||||
Multispecies BBP | NS | NS | NS | n/a | Riddell et al., 2010. | |||||||
Faecalibacterium prausnitzii | ++ | n/a | ++ | n/a | Foditsch et al., 2015.
Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers.. https://doi.org/10.1371/journal.pone.0145485 26710101 PLoS One. 2015; 10 (e0145485) | |||||||
Multispecies BBP | NS | NS | ++ | n/a | Jersey calves challenged with Salmonella Typhimurium. Reduction in inflammatory markers. | Liang et al., 2020. |
Effects on Growth and Performance
- Timmerman H.M.
- Mulder L.
- Everts H.
- Van Espen D.C.
- Van Der Wal E.
- Klaassen G.
- Rouwers S.M.G.
- Hartemink R.
- Rombouts F.M.
- Beynen A.C.
- Frizzo L.S.
- Soto L.P.
- Zbrun M.V.
- Signorini M.L.
- Bertozzi E.
- Sequeira G.
- Armesto R.R.
- Rosmini M.R.
- Frizzo L.S.
- Soto L.P.
- Zbrun M.V.
- Signorini M.L.
- Bertozzi E.
- Sequeira G.
- Armesto R.R.
- Rosmini M.R.
- Timmerman H.M.
- Mulder L.
- Everts H.
- Van Espen D.C.
- Van Der Wal E.
- Klaassen G.
- Rouwers S.M.G.
- Hartemink R.
- Rombouts F.M.
- Beynen A.C.

Effects on Health
- Signorini M.L.
- Soto L.P.
- Zbrun M.V.
- Sequeira G.J.
- Rosmini M.R.
- Frizzo L.S.
- Wang Q.
- Lv L.
- Jiang H.
- Wang K.
- Yan R.
- Li Y.
- Ye J.
- Wu J.
- Wang Q.
- Bian X.
- Yang L.
- Jiang X.
- Xie J.
- Lu Y.
- Shen J.
- Li L.
- Zhang R.
- Zhou M.
- Tu Y.
- Zhang N.F.
- Deng K.D.
- Ma T.
- Diao Q.Y.
Conclusion
PREBIOTICS
- Gibson G.R.
- Hutkins R.
- Sanders M.E.
- Prescott S.L.
- Reimer R.A.
- Salminen S.J.
- Scott K.
- Stanton C.
- Swanson K.S.
- Cani P.D.
- Verbeke K.
- Reid G.
Fructooligosaccharides
Effects on Growth and Performance
Prebiotics used 1 The term listed is how the prebiotic was described in the manuscript, but the grouping in the table is based on structure similarities. CO = cellooligosaccharides; scFOS = short-chain fructooligosaccharides; GOS = galactooligosaccharides; CWS = condensed whey solubles that are created enzymatically and contain a variety of di- and oligosaccharide compounds (e.g., galactosyl-lactose); MOS = mannanoligosaccharides; YCW = yeast cell wall (described as mannanoligosaccharide product in the paper); MFOS = mannan and fructooligosaccharides; BC = β-cyclodextrin; SRB = heat-stabilized rice bran; BG = β-glucans. | Effects in response to | Remark | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight gain | Feed efficiency | Health | Gut development | |||||||||
Oligosaccharides | ||||||||||||
CO | ++ | ++ | NS | n/a | Feed efficiency was improved after weaning. | Hasunuma et al., 2011.
Effect of cellooligosaccharide or synbiotic feeding on growth performance, fecal condition and hormone concentrations in Holstein calves.. 10.1111/j.1740-0929.2010.00861.x Anim. Sci. J. 2011; 82: 543-548 | ||||||
CO | NS | n/a | n/a | n/a | Uyeno et al., 2013 Uyeno, Y., K. Kawashima, T. Hasunuma, W. Wakimoto, M. Noda, S. Nagashima, K. Akiyama, M. Tabata, and S. Kushibiki. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest. Sci. 153:88–93. 10.1016/j.livsci.2013.02.005. | |||||||
CO | + | n/a | n/a | n/a | Beef calves weaned between 3 and 4 mo. | Kido et al., 2019. | ||||||
scFOS | + | n/a | n/a | n/a | Kaufhold et al., 2000. | |||||||
Inulin | +, NS | NS, NS | ++, ++ | n/a, n/a | 2 experiments were performed where FOS was fed in milk replacer. | Quigley et al., 2002 | ||||||
Inulin | NS | + | n/a | –, – | Inulin calves tended to have decreased jejunal villus lengths and proliferative ileal cells. | Masanetz et al., 2010 | ||||||
scFOS | NS | + | n/a | n/a | Grand et al., 2013 | |||||||
Inulin, serum proteins | + | +++, – – | +++ | n/a | Feed efficiency was increased in FOS calves in wk 1 but decreased in wk 2–4. | Pineda et al., 2016 Pineda, A., M. A. Ballou, J. M. Campbell, F. C. Cardoso, and J. K. Drackley. 2016. Evaluation of serum protein-based arrival formula and serum protein supplement (gammulin) on growth, morbidity, and mortality of stressed (transport and cold) male dairy calves. J. Dairy Sci. 99:9027–9039. 10.3168/jds.2016-11237. | ||||||
scFOS | NS | n/a | n/a | n/a | Pantophlet et al., 2016 Pantophlet, A. J., M. S. Gilbert, J. J. G. C. van den Borne, W. J. J. Gerrits, M. G. Priebe, and R. J. Vonk. 2016. Insulin sensitivity in calves decreases substantially during the first 3 months of life and is unaffected by weaning or fructo-oligosaccharide supplementation. J. Dairy Sci. 99:7602–7611. 10.3168/jds.2016-11084. | |||||||
Inulin | +++ | n/a | n/a | n/a | Jonova et al., 2018. | |||||||
Galactosyl-lactose | ++ | + | + | n/a | Quigley et al., 1997 | |||||||
GOS | – – – | n/a | – – – | ++ | Jejunal villus length and colon crypt depth were increased in GOS calves. | Castro et al., 2016 Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006. | ||||||
CWS | NS | – – | +++ | n/a | G:F was reduced after weaning in CWS-fed calves, whereas mean fecal scores after weaning were decreased in CWS calves. | Senevirathne et al., 2019 | ||||||
MOS | NS | n/a | +++ | n/a | Heinrichs et al., 2003. | |||||||
MOS | NS | –, – – | NS | n/a | Terre et al., 2007. | |||||||
MOS | NS | NS | ++ | NS | Jersey calves had increased BW in wk 9; both Jersey and Holstein calves had decreased mean fecal scores. | Hill et al., 2009. | ||||||
MOS | NS | n/a | ++ | n/a | Morrison et al., 2010 | |||||||
MOS | NS | n/a | ++ | n/a | Mean fecal score was decreased in MOS-supplemented calves during wk 1. | da Silva et al., 2012. | ||||||
MOS | +++ | +++ | +++ | n/a | Crossbred Holstein calves were used. | Ghosh and Mehla, 2012. | ||||||
MOS | ++ | n/a | n/a | n/a | Increased ADG in wk 7 and 8 of trial. | Roodposhti et al., 2012 | ||||||
MOS | + | NS | ++ | n/a | Heinrichs et al., 2013. | |||||||
MOS | NS | NS | NS | n/a | Kara et al., 2015. | |||||||
MOS, probiotics, fibrolytic enzymes | NS | NS | +++ | n/a | Marcondes et al., 2016 Marcondes, M. I., T. R. Pereira, J. C. Chagas, E. A. Filgueiras, M. M. Castro, G. P. Costa, A. L. Sguizzato, and R. D. Sainz. 2016. Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre- and probiotics. Trop. Anim. Health Prod. 48:1555–1560. 10.1007/s11250-016-1127-1. | |||||||
YCW | NS | NS | ++ | n/a | Mean fecal score was decreased in YCW-supplemented calves during wk 3. | Froehlich et al., 2017 | ||||||
MOS | NS | n/a | n/a | +++ | Rumen papillae and jejunal villus lengths were increased in MOS calves. | Alves Costa et al., 2019 Alves Costa, N., A. P. Pansani, C. H. de Castro, D. Basile Colugnati, C. H. Xaxier, K. C. Guimaraes, L. Antas Rabelo, V. Nunes-Souza, L. F. Souza Caixeta, and R. Nassar Ferreira. 2019. Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS One. 14:e0214626. 10.1371/journal.pone.0214626. | ||||||
MFOS | NS | n/a | n/a | NS | Alves Costa et al., 2019 Alves Costa, N., A. P. Pansani, C. H. de Castro, D. Basile Colugnati, C. H. Xaxier, K. C. Guimaraes, L. Antas Rabelo, V. Nunes-Souza, L. F. Souza Caixeta, and R. Nassar Ferreira. 2019. Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS One. 14:e0214626. 10.1371/journal.pone.0214626. | |||||||
Unknown or other | ||||||||||||
BC | NS | n/a | NS | n/a | Castro-Hermida et al., 2001 | |||||||
Commercial product | NS | NS | NS | n/a | It contained fermentation products of Lactobacillus gasseri OLL2716 and Propionibacterium freudenreichii ET-3. | Heinrichs et al., 2009. | ||||||
Lactulose | NS | NS | n/a | ++, + | Lactulose calves had increased jejunal villus lengths and tended to have more proliferative ileal cells. | Masanetz et al., 2010 | ||||||
Commercial product | NS | + | NS | n/a | Quezada-Mendoza et al., 2011 | |||||||
SRB | NS | n/a | – | n/a | Velasquez-Munoz et al., 2019. | |||||||
Polysaccharides | ||||||||||||
BG, ascorbic acid | NS | NS | n/a | n/a | Eicher et al., 2010 | |||||||
BG | NS | NS | ++ | n/a | Mean fecal score was decreased in BG-supplemented calves during wk 3. | Kim et al., 2011. | ||||||
Kraft pulp | NS | n/a | n/a | n/a | Beef calves weaned between 3 and 4 mo. | Kido et al., 2019. | ||||||
BG | – – – | n/a | – | n/a | McDonnell et al., 2019 McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x. |

Effects on Health
Pineda, A., M. A. Ballou, J. M. Campbell, F. C. Cardoso, and J. K. Drackley. 2016. Evaluation of serum protein-based arrival formula and serum protein supplement (gammulin) on growth, morbidity, and mortality of stressed (transport and cold) male dairy calves. J. Dairy Sci. 99:9027–9039. 10.3168/jds.2016-11237.
Pineda, A., M. A. Ballou, J. M. Campbell, F. C. Cardoso, and J. K. Drackley. 2016. Evaluation of serum protein-based arrival formula and serum protein supplement (gammulin) on growth, morbidity, and mortality of stressed (transport and cold) male dairy calves. J. Dairy Sci. 99:9027–9039. 10.3168/jds.2016-11237.
Wakelin, M. W., M. J. Sanz, A. Dewar, S. M. Albelda, S. W. Larkin, N. Boughton-Smith, T. J. Williams, and S. Nourshargh. 1996. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J. Exp. Med. 184:229–239. 10.1084/jem.184.1.229.
Galactooligosaccharides
Effects on Growth and Performance
Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006.
Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006.
Effects on Health
Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006.
Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006.
Mannanoligosaccharides
Effects on Growth and Performance
Alves Costa, N., A. P. Pansani, C. H. de Castro, D. Basile Colugnati, C. H. Xaxier, K. C. Guimaraes, L. Antas Rabelo, V. Nunes-Souza, L. F. Souza Caixeta, and R. Nassar Ferreira. 2019. Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS One. 14:e0214626. 10.1371/journal.pone.0214626.
Alves Costa, N., A. P. Pansani, C. H. de Castro, D. Basile Colugnati, C. H. Xaxier, K. C. Guimaraes, L. Antas Rabelo, V. Nunes-Souza, L. F. Souza Caixeta, and R. Nassar Ferreira. 2019. Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS One. 14:e0214626. 10.1371/journal.pone.0214626.
Effects on Health
Marcondes, M. I., T. R. Pereira, J. C. Chagas, E. A. Filgueiras, M. M. Castro, G. P. Costa, A. L. Sguizzato, and R. D. Sainz. 2016. Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre- and probiotics. Trop. Anim. Health Prod. 48:1555–1560. 10.1007/s11250-016-1127-1.
β-Glucans
- Roberfroid M.
- Gibson G.R.
- Hoyles L.
- McCartney A.L.
- Rastall R.
- Rowland I.
- Wolvers D.
- Watzl B.
- Szajewska H.
- Stahl B.
- Guarner F.
- Respondek F.
- Whelan K.
- Coxam V.
- Davicco M.J.
- Leotoing L.
- Wittrant Y.
- Delzenne N.M.
- Cani P.D.
- Neyrinck A.M.
- Meheust A.
- Snart J.
- Bibiloni R.
- Grayson T.
- Lay C.
- Zhang H.
- Allison G.E.
- Laverdiere J.K.
- Temelli F.
- Vasanthan T.
- Bell R.
- Tannock G.W.
- Pieper R.
- Jha R.
- Rossnagel B.
- Van Kessel A.G.
- Souffrant W.B.
- Leterme P.
Effects on Growth and Performance
McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x.
McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x.
Effects on Health
McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x.
McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x.
Cellooligosaccharides
Effects on Growth and Performance
Uyeno, Y., K. Kawashima, T. Hasunuma, W. Wakimoto, M. Noda, S. Nagashima, K. Akiyama, M. Tabata, and S. Kushibiki. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest. Sci. 153:88–93. 10.1016/j.livsci.2013.02.005.
Uyeno, Y., K. Kawashima, T. Hasunuma, W. Wakimoto, M. Noda, S. Nagashima, K. Akiyama, M. Tabata, and S. Kushibiki. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest. Sci. 153:88–93. 10.1016/j.livsci.2013.02.005.
- Hasunuma T.
- Kawashima K.
- Nakayama H.
- Murakami T.
- Kanagawa H.
- Ishii T.
- Akiyama K.
- Yasuda K.
- Terada F.
- Kushibiki S.
Effects on Health
- Hasunuma T.
- Kawashima K.
- Nakayama H.
- Murakami T.
- Kanagawa H.
- Ishii T.
- Akiyama K.
- Yasuda K.
- Terada F.
- Kushibiki S.
Uyeno, Y., K. Kawashima, T. Hasunuma, W. Wakimoto, M. Noda, S. Nagashima, K. Akiyama, M. Tabata, and S. Kushibiki. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest. Sci. 153:88–93. 10.1016/j.livsci.2013.02.005.
Other Prebiotic Compounds
Effects on Growth and Performance
Effects on Health
Conclusion
FUTURE RESEARCH
- Winder C.B.
- Miltenburg C.L.
- Sargeant J.M.
- LeBlanc S.J.
- Haley D.B.
- Lissemore K.D.
- Godkin M.A.
- Duffield T.F.
- Signorini M.L.
- Soto L.P.
- Zbrun M.V.
- Sequeira G.J.
- Rosmini M.R.
- Frizzo L.S.
- Sargeant J.M.
- O’Connor A.M.
- Gardner I.A.
- Dickson J.S.
- Torrence M.E.
- Dohoo I.R.
- Lefebvre S.L.
- Morley P.S.
- Ramirez A.
- Snedeker K.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
- Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets..https://doi.org/10.3168/jds.S0022-0302(95)76914-48675766J. Dairy Sci. 1995; 78: 2838-2846
- Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves..https://doi.org/10.1016/0377-8401(95)00850-0Anim. Feed Sci. Technol. 1996; 57: 39-49
- Postbiotics: An evolving term within the functional foods field..https://doi.org/10.1016/j.tifs.2018.03.009Trends Food Sci. Technol. 2018; 75: 105-114
- Effectiveness of precalving treatment on postcalving udder health in nulliparous dairy heifers: A systematic review and meta-analysis..https://doi.org/10.3168/jds.2017-1430129525300J. Dairy Sci. 2018; 101: 4707-4728
- Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health..https://doi.org/10.3168/jds.2016-1139928012624J. Dairy Sci. 2017; 100: 1189-1199
Alves Costa, N., A. P. Pansani, C. H. de Castro, D. Basile Colugnati, C. H. Xaxier, K. C. Guimaraes, L. Antas Rabelo, V. Nunes-Souza, L. F. Souza Caixeta, and R. Nassar Ferreira. 2019. Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS One. 14:e0214626. 10.1371/journal.pone.0214626.
- Probiotic therapy for irritable bowel syndrome..20567539Gastroenterol. Hepatol. (N Y). 2010; 6: 39-44
AAFCO (Association of American Feed Control Officials Inc.). 2013 Official Publication. Pages 450–451. Assoc. Am. Feed Control Offic., Champaign, IL.
- Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant..J. Dairy Sci. 2004; 87: E55-E65
- Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves..https://doi.org/10.1016/j.anifeedsci.2013.04.015Anim. Feed Sci. Technol. 2013; 186: 1-11
Benyacoub, J., F. Rochat, K. Y. Saudan, I. Rochat, N. Antille, C. Cherbut, T. von der Weid, E. J. Schiffrin, and S. Blum. 2008. Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J. Nutr. 138:123–129. 10.1093/jn/138.1.123.
- Gut health’: A new objective in medicine?.https://doi.org/10.1186/1741-7015-9-2421401922BMC Med. 2011; 9: 24
Blum, J. W., T. H. Elsasser, D. L. Greger, S. Wittenberg, F. de Vries, and O. Distl. 2007. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves. Domest. Anim. Endocrinol. 33:245–268. 10.1016/j.domaniend.2006.05.007.
- Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer..https://doi.org/10.1016/j.vetmic.2014.05.02624954478Vet. Microbiol. 2014; 172: 248-255
- Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose..https://doi.org/10.3168/jds.S0022-0302(97)76148-49313145J. Dairy Sci. 1997; 80: 2035-2044
- Effect of milk feeding strategy and lactic acid probiotics on growth and behavior of dairy calves fed using an automated feeding system..https://doi.org/10.1093/jas/skz03430689895J. Anim. Sci. 2019; 97: 1052-1065
Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J. Dairy Sci. 99:9682–9702. 10.3168/jds.2016-11006.
Castro-Hermida, J. A., Y. Gonzalez-Losada, F. Freire-Santos, M. Mezo-Menendez, and E. Ares-Mazas. 2001. Evaluation of beta-cyclodextrin against natural infections of cryptosporidiosis in calves. Vet. Parasitol. 101:85–89. 10.1016/s0304-4017(01)00505-2.
Cazzola, M., T. A. Tompkins, and M. G. Matera. 2010 Immunomodulatory impact of a synbiotic in T(h)1 and T (h)2 models of infection. Ther. Adv. Respir. Dis. 4:259–270. 10.1177/1753465810379009.
- Probiotics in animal nutrition and health..https://doi.org/10.3920/BM2008.100221840795Benef. Microbes. 2010; 1: 3-9
- Influence of a probiotic yeast (Saccharomyces cerevisiae CNCM I-1077) on microbial colonization and fermentation in the rumen of newborn lamb..https://doi.org/10.1080/089106002760002739Microb. Ecol. Health Dis. 2002; 14: 30-36
- Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge..https://doi.org/10.3382/ps.2010-0098721076097Poult. Sci. 2010; 89: 2597-2607
- Evaluation of mannan-oligosaccharides offered in milk replacers or calf starters and their effect on performance and rumen development of dairy calves..https://doi.org/10.1590/S1516-35982012000300038Rev. Bras. Zootec. 2012; 41: 746-752
- Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs..https://doi.org/10.2527/2004.8261882x15217018J. Anim. Sci. 2004; 82: 1882-1891
- β-Glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin..10.1016/j.vetimm.2011.05.014Vet. Immunol. Immunopathol. 2011; 142: 258-264
Eicher, S. D., I. V. Wesley, V. K. Sharma, and T. R. Johnson. 2010. Yeast cell-wall products containing beta-glucan plus ascorbic acid affect neonatal bos taurus calf leukocytes and growth after a transport stressor. J. Anim. Sci. 88:1195–1203. 10.2527/jas.2008-1669.
Erickson, P. S., S. P. Marston, M. Gemmel, J. Deming, R. G. Cabral, M. R. Murphy, and J. I. Marden. 2012. Short communication: Kelp taste preferences by dairy calves. J. Dairy Sci. 95:856–858. 10.3168/jds.2011-4826.
- Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves..https://doi.org/10.3168/jds.2017-1339729397179J. Dairy Sci. 2018; 101: 3099-3109
- Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers..https://doi.org/10.1371/journal.pone.014548526710101PLoS One. 2015; 10 (e0145485)
- Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves..https://doi.org/10.1038/s41598-018-32375-530237565Sci. Rep. 2018; 8: 14147
- Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder..https://doi.org/10.1016/j.anifeedsci.2010.03.005Anim. Feed Sci. Technol. 2010; 157: 159-167
- Effect of lactic acid bacteria and lactose on growth performance and intestinal microbial balance of artificially reared calves..https://doi.org/10.1016/j.livsci.2011.04.002Livest. Sci. 2011; 140: 246-252
Froehlich, K. A., K. W. Abdelsalam, C. Chase, J. Koppien-Fox, and D. P. Casper. 2017. Evaluation of essential oils and prebiotics for newborn dairy calves. J. Anim. Sci. 95:3772–3782. 10.2527/jas.2017.1601
- Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli..https://doi.org/10.1051/rnd:200504016045891Reprod. Nutr. Dev. 2005; 45: 427-440
- Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves..10.1007/s11250-011-9944-8Trop. Anim. Health Prod. 2012; 44: 617-622
- Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics..https://doi.org/10.1038/nrgastro.2017.7528611480Nat. Rev. Gastroenterol. Hepatol. 2017; 14: 491-502
- Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves..https://doi.org/10.1111/jvim.1469528390070J. Vet. Intern. Med. 2017; 31: 928-939
Gorka, P., Z. M. Kowalski, R. Zabielski, and P. Guilloteau. 2018. Invited review: Use of butyrate to promote gastrointestinal tract development in calves. J. Dairy Sci. 101:4785–4800. 10.3168/jds.2017-14086.
- Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool..10.1371/journal.pone.0134802PLoS One. 2015; 10 (e0134802)
Grand, E., F. Respondek, C. Martineau, J. Detilleux, and G. Bertrand. 2013. Effects of short-chain fructooligosaccharides on growth performance of preruminant veal calves. J. Dairy Sci. 96:1094–1101. 10.3168/jds.2011-4949.
- Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods..https://doi.org/10.1097/00005176-200001000-0001910630441J. Pediatr. Gastroenterol. Nutr. 2000; 30: 61-67
- Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium..https://doi.org/10.3168/jds.2016-1250928734601J. Dairy Sci. 2017; 100: 7154-7164
Hartemink, R., K. M. Van Laere, and F. M. Rombouts. 1997. Growth of enterobacteria on fructo-oligosaccharides. J. Appl. Microbiol. 83:367–374. 10.1046/j.1365-2672.1997.00239.x.
- Effect of cellooligosaccharide or synbiotic feeding on growth performance, fecal condition and hormone concentrations in Holstein calves..10.1111/j.1740-0929.2010.00861.xAnim. Sci. J. 2011; 82: 543-548
- Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health..https://doi.org/10.1016/j.anifeedsci.2017.02.01032288069Anim. Feed Sci. Technol. 2017; 226: 81-87
- Fecal and saliva IgA secretion when feeding a concentrated mannan oligosaccharide to neonatal dairy calves..https://doi.org/10.15232/S1080-7446(15)30266-7Prof. Anim. Sci. 2013; 29: 457-462
- Effects of a prebiotic supplement on health of neonatal dairy calves..10.1016/j.livsci.2009.04.003Livest. Sci. 2009; 125: 149-154
- Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves..10.3168/jds.S0022-0302(03)74018-1J. Dairy Sci. 2003; 86: 4064-4069
- The addition of cottonseed hulls to the starter and supplementation of live yeast or mannanoligosaccharide in the milk for young calves..10.3168/jds.2008-1320J. Dairy Sci. 2009; 92: 790-798
Hoseinabadi, M., M. Dehghan-Banadaky, and A. Zali. 2013. Effect of yeast probiotic (Saccharomyces cerevisiae) in milk or starter on growth performance, fecal score and rumen parameters of dairy calves. J. Dairy Sci. 96(E-suppl. 1):12. (Abstr.)
- Rumen fermentation characteristics in pre-weaning calves receiving yeast culture supplements..https://doi.org/10.17221/1674-CJASCzech J. Anim. Sci. 2009; 54: 435-442
- Does yeast (Saccharomyces cerevisiae) supplementation in calf starter modify feed intake and liveweight gain of dairy bull calves?.https://doi.org/10.22358/jafs/65611/2015J. Anim. Feed Sci. 2015; 24: 295-301
- Probiotics: Effects on immunity..https://doi.org/10.1093/ajcn/73.2.444s11157355Am. J. Clin. Nutr. 2001; 73: 444S-450S
- Impact of the flour of Jerusalem artichoke on the production of methane and carbon dioxide and growth performance in calves..10.14202/vetworld.2018.1532-1538Vet. World. 2018; 11: 1532-1538
- Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity..10.3390/md13074270Mar. Drugs. 2015; 13: 4270-4280
- Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development and growth in calves..J. Agric. Sci. 2008; 9: 19-22
- Effects of supplemental mannanoligosaccharides on growth performance, faecal characteristics and health in dairy calves..10.5713/ajas.15.0124Asian-Australas. J. Anim. Sci. 2015; 28: 1599-1605
- Fructo-oligosaccharide supplementation: Effects on metabolic, endocrine and hematological traits in veal calves..https://doi.org/10.1046/j.1439-0442.2000.00257.x10841459J. Vet. Med. A Physiol. Pathol. Clin. Med. 2000; 47: 17-29
- Provision of beta-glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre- to post-weaning period on pasture..10.1111/asj.13299Anim. Sci. J. 2019; 90: 1537-1543
- Effects of hydrolyzed yeast supplementation in calf starter on immune responses to vaccine challenge in neonatal calves..https://doi.org/10.1017/S175173111000267322440035Animal. 2011; 5: 953-960
- Farm characteristics and calf management practices on dairy farms with and without diarrhea: A case-control study to investigate risk factors for calf diarrhea..https://doi.org/10.3168/jds.2013-769524881793J. Dairy Sci. 2014; 97: 5110-5119
- Oat bran beta-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria..10.1016/s0168-1605(98)00156-1Int. J. Food Microbiol. 1998; 45: 163-169
- Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows..https://doi.org/10.3168/jds.2016-1234928342610J. Dairy Sci. 2017; 100: 4113-4127
- Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens..https://doi.org/10.1016/S0378-1135(03)00077-412814892Vet. Microbiol. 2003; 94: 245-256
- Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves..https://doi.org/10.3168/jds.S0022-0302(04)73340-815453499J. Dairy Sci. 2004; 87: 1832-1839
- Characterization of the rumen microbiota of pre-ruminant calves using metagenomics tools..https://doi.org/10.1111/j.1462-2920.2011.02543.x21906219Environ. Microbiol. 2012; 14: 129-139
- Supplementing neonatal Jersey calves with a blend of probiotic bacteria improves the pathophysiological response to an oral Salmonella enterica serotype Typhimurium challenge..https://doi.org/10.3168/jds.2019-1748032475670J. Dairy Sci. 2020; 103: 7351-7363
- Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota..https://doi.org/10.1371/journal.pone.017423928346507PLoS One. 2017; 12 (e0174239)
Luthuli, S., S. Wu, Y. Cheng, X. Zheng, M. Wu, and H. Tong. 2019. Therapeutic effects of fucoidan: A review on recent studies. Mar. Drugs. 17. 10.3390/md17090487.
- Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals..https://doi.org/10.1016/j.vetimm.2018.10.00430459000Vet. Immunol. Immunopathol. 2018; 205: 35-48
- Effect of feeding yeast culture on performance, health, and immunocompetence of dairy calves..https://doi.org/10.3168/jds.2007-058218349243J. Dairy Sci. 2008; 91: 1497-1509
- Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves..https://doi.org/10.3168/jds.2015-960726342981J. Dairy Sci. 2015; 98 (a): 8044-8053
- The gut microbiome and its potential role in the development and function of the newborn calf gastrointestinal tract..https://doi.org/10.3389/fvets.2015.0003626664965Front. Vet. Sci. 2015; 2 (b): 36
- Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health..https://doi.org/10.3168/jds.2016-1223928501408J. Dairy Sci. 2017; 100: 5996-6005
- Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut..10.1038/mi.2011.41Mucosal Immunol. 2011; 4: 603-611
Marcondes, M. I., T. R. Pereira, J. C. Chagas, E. A. Filgueiras, M. M. Castro, G. P. Costa, A. L. Sguizzato, and R. D. Sainz. 2016. Performance and health of Holstein calves fed different levels of milk fortified with symbiotic complex containing pre- and probiotics. Trop. Anim. Health Prod. 48:1555–1560. 10.1007/s11250-016-1127-1.
- Effects of probiotics, prebiotics, and synbiotics on human health..https://doi.org/10.3390/nu909102128914794Nutrients. 2017; 9: 1021
Marquez, C. J. 2014. Calf intestinal health: Assessment and dietary interventions for its improvement. PhD Thesis. Univ. Illinois at Urbana-Champaign, Champaign, IL.
Masanetz, S., W. Preissinger, H. H. Meyer, and M. W. Pfaffl. 2011. Effects of the prebiotics inulin and lactulose on intestinal immunology and hematology of preruminant calves. Animal 5:1099–1106. 10.1017/S1751731110002521.
Masanetz, S., N. Wimmer, C. Plitzner, E. Limbeck, W. Preissinger, and M. W. Pfaffl. 2010. Effects of inulin and lactulose on the intestinal morphology of calves. Animal 4:739–744. 10.1017/S1751731109991728.
- Impact of milk-feeding programs on fecal bacteria population and antimicrobial resistance genes in Escherichia coli isolated from feces in preweaned calves..https://doi.org/10.2527/jam2016-1232J. Anim. Sci. 2016; 94: 593
- An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system..https://doi.org/10.1016/j.cell.2005.05.00716009137Cell. 2005; 122: 107-118
McDonnell, R. P., J. V. O’Doherty, B. Earley, A. M. Clarke, and D. A. Kenny. 2019. Effect of supplementation with n-3 polyunsaturated fatty acids and/or beta-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre- and post-weaning periods. J. Anim. Sci. Biotechnol. 10:7. 10.1186/s40104-019-0317-x.
- Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves..https://doi.org/10.1038/s41598-017-00223-728298634Sci. Rep. 2017; 7: 198
- Fn-type chicory inulin hydrolysate has a prebiotic effect in humans..10.1093/jn/130.5.1197J. Nutr. 2000; 130: 1197-1199
Morrison, S. J., S. Dawson, and A. F. Carson. 2010. The effects of mannan oligosaccharide and streptococcus faecium addition to milk replacer on calf health and performance. Livest. Sci. 131:292–296. 10.1016/j.livsci.2010.04.002.
- Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep..https://doi.org/10.2527/1995.7361811x7673076J. Anim. Sci. 1995; 73: 1811-1818
- Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves..10.1016/j.rvsc.2011.04.008Res. Vet. Sci. 2012; 92: 427-434
- Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth..https://doi.org/10.1371/journal.pone.006315723646192PLoS One. 2013; 8 (e63157)
- Calf mortality as a welfare indicator on British cattle farms..https://doi.org/10.1016/j.tvjl.2007.02.00617408994Vet. J. 2008; 176: 177-181
- Secretory IgA in the coordination of establishment and maintenance of the microbiota..10.1016/j.it.2016.03.002Trends Immunol. 2016; 37: 287-296
Pantophlet, A. J., M. S. Gilbert, J. J. G. C. van den Borne, W. J. J. Gerrits, M. G. Priebe, and R. J. Vonk. 2016. Insulin sensitivity in calves decreases substantially during the first 3 months of life and is unaffected by weaning or fructo-oligosaccharide supplementation. J. Dairy Sci. 99:7602–7611. 10.3168/jds.2016-11084.
- Longitudinal study on morbidity and mortality in white veal calves in Belgium..https://doi.org/10.1186/1746-6148-8-2622414223BMC Vet. Res. 2012; 8: 26
- Veal calf health on the day of arrival at growers in Ohio..https://doi.org/10.2527/jas2017.164228992033J. Anim. Sci. 2017; 95: 3863-3872
- IgA response to symbiotic bacteria as a mediator of gut homeostasis..https://doi.org/10.1016/j.chom.2007.09.01318005754Cell Host Microbe. 2007; 2: 328-339
- Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weand piglets..https://doi.org/10.1111/j.1574-6941.2008.00605.x19049653FEMS Microbiol. Ecol. 2008; 66: 556-566
Pineda, A., M. A. Ballou, J. M. Campbell, F. C. Cardoso, and J. K. Drackley. 2016. Evaluation of serum protein-based arrival formula and serum protein supplement (gammulin) on growth, morbidity, and mortality of stressed (transport and cold) male dairy calves. J. Dairy Sci. 99:9027–9039. 10.3168/jds.2016-11237.
- Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii 1079..https://doi.org/10.1016/j.anifeedsci.2007.08.003Anim. Feed Sci. Technol. 2008; 140: 223-232
- The effects of supplementing yeast fermentation products on gut permeability, hormone concentration, and growth in newborn dairy calves..https://doi.org/10.1093/tas/txaa00432705006Transl. Anim. Sci. 2020; 4: 809-821
- Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves..https://doi.org/10.1292/jvms.14-002824614603J. Vet. Med. Sci. 2014; 76: 877-885
Quezada-Mendoza, V. C., A. J. Heinrichs, and C. M. Jones. 2011. The effects of a prebiotic supplement (prebio support) on fecal and salivary iga in neonatal dairy calves. Livest. Sci. 142:222–228. 10.1016/j.livsci.2011.07.015.
Quigley, J. D., 3rd, J. J. Drewry, L. M. Murray, and S. J. Ivey. 1997. Body weight gain, feed efficiency, and fecal scores of dairy calves in response to galactosyl-lactose or antibiotics in milk replacers. J. Dairy Sci. 80:1751–1754. 10.3168/jds.S0022-0302(97)76108-3.
Quigley, J. D., 3rd, C. J. Kost, and T. A. Wolfe. 2002. Effects of spray-dried animal plasma in milk replacers or additives containing serum and oligosaccharides on growth and health of calves. J. Dairy Sci. 85:413–421. 10.3168/jds.S0022-0302(02)74089-7.
- Calf management risk factors on dairy farms associated with male calf mortality on veal farms..https://doi.org/10.3168/jds.2017-1357829248230J. Dairy Sci. 2018; 101: 1785-1794
- Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial..https://doi.org/10.3168/jds.2018-1579330852016J. Dairy Sci. 2019; 102: 4498-4505
- Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters..Int. J. Appl. Res. Vet. Med. 2010; 8: 78-85
- Prebiotic effects: Metabolic and health benefits..https://doi.org/10.1017/S000711451000336320920376Br. J. Nutr. 2010; 104: S1-S63
Roodposhti, P. M., and N. Dabiri. 2012. Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian Australas. J. Anim. 25:1255–1261. 10.5713/ajas.2011.11312.
- The REFLECT statement: Reporting guidelines for randomized controlled trials in livestock and food safety: Explanation and elaboration..https://doi.org/10.4315/0362-028X-73.3.57920202349J. Food Prot. 2010; 73: 579-603
- Risk factors identified on arrival associated with morbidity and mortality at a grain-fed veal facility: A prospective, single cohort study..https://doi.org/10.3168/jds.2019-1682931378492J. Dairy Sci. 2019; 102: 9224-9235
- Number of viable bacteria and presumptive antibiotic residues in milk fed to calves on commercial dairies..JAVMA. 1997; 211: 1029-1035
Senevirathne, N. D., J. L. Anderson, and L. Metzger. 2019. Growth performance, nutrient utilization, and health of dairy calves supplemented with condensed whey solubles. J. Dairy Sci. 102:8108–8119. 10.3168/jds.2019-16314.
- Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens..https://doi.org/10.1016/j.femsre.2004.01.00315374659FEMS Microbiol. Rev. 2004; 28: 405-440
- Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate..10.1111/j.1365-2672.1998.00590.xJ. Appl. Microbiol. 1998; 85: 769-777
- Impact of probiotic administration on the health and fecal microbiota of young calves: A meta-analysis of randomized controlled trials of lactic acid bacteria..https://doi.org/10.1016/j.rvsc.2011.05.00121620428Res. Vet. Sci. 2012; 93: 250-258
Singh, S. P., J. S. Jadaun, L. K. Narnoliya, and A. Pandey. 2017. Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl. Biochem. Biotechnol. 183:613–635. 10.1007/s12010-017-2605-2.
- Antimicrobial decision making for enteric diseases of cattle..https://doi.org/10.1016/j.cvfa.2014.11.00425705025Vet. Clin. North Am. Food Anim. Pract. 2015; 31: 47-60
- Supplementation of the diet with high-viscosity beta-glucan results in enrichment for lactobacilli in the rat cecum..https://doi.org/10.1128/AEM.72.3.1925-1931.200616517639Appl. Environ. Microbiol. 2006; 72: 1925-1931
Song, Y., N. Malmuthuge, F. Li, and L. L. Guan. 2019. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiol. Ecol. 95. 10.1093/femsec/fiy203.
- Effects of bacterial inoculants in milk on the performance of intensively reared calves..https://doi.org/10.1016/j.anifeedsci.2013.12.004Anim. Feed Sci. Technol. 2014; 189: 117-122
- A review of 733 published trials on Biol.-Mos, a mannan-oligosaccharide, and Actigen, a second generation mannose rich fraction, on farm and companion animals..https://doi.org/10.1017/jan.2015.6J. Appl. Anim. Nutr. 2015; 3 (e8)
Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79:205–211. 10.1093/ps/79.2.205.
- Associations between housing, management, and morbidity during rearing and subsequent first lactation milk production of dairy cows in southwest Sweden..https://doi.org/10.3168/jds.2007-023518349244J. Dairy Sci. 2008; 91: 1510-1518
- Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides..10.1111/nure.12106Nutr. Rev. 2014; 72: 377-389
- Effects of mannan oligosaccharides on performance and microogranism fecal counts of calves following an ehnahced-growth feeding program..10.1016/j.anifeedsci.2006.11.009Anim. Feed Sci. Technol. 2007; 137: 115-125
- Health and growth of veal calves fed milk replacers with or without probiotics..https://doi.org/10.3168/jds.S0022-0302(05)72891-515905445J. Dairy Sci. 2005; 88: 2154-2165
- Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves..https://doi.org/10.3168/jds.2017-1401929935825J. Dairy Sci. 2018; 101: 9229-9244
Uyeno, Y., K. Kawashima, T. Hasunuma, W. Wakimoto, M. Noda, S. Nagashima, K. Akiyama, M. Tabata, and S. Kushibiki. 2013. Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest. Sci. 153:88–93. 10.1016/j.livsci.2013.02.005.
- Effect of probiotics/prebiotics on cattle health and productivity..https://doi.org/10.1264/jsme2.ME1417626004794Microbes Environ. 2015; 30: 126-132
- Ingestion of milk containing very low concentration of antimicrobials: Longitudinal effect on fecal microbiota composition in preweaned calves..https://doi.org/10.1371/journal.pone.014752526808865PLoS One. 2016; 11 (e0147525)
- Effect of prebiotic supplementation with stabilized rice bran in milk of pre-weaned organic Holstein calves..https://doi.org/10.1186/s12917-019-1802-330732598BMC Vet. Res. 2019; 15: 53
Vera, C., A. Cordova, C. Aburto, C. Guerrero, S. Suarez, and A. Illanes. 2016. Synthesis and purification of galacto-oligosaccharides: State of the art. World J. Microbiol. Biotechnol. 32:197. 10.1007/s11274-016-2159-4.
- Early supplementation of Saccharomyces cerevisiae boulardii CNCM I-1079 in newborn dairy calves increases IgA production in the intestine at 1 week of age..10.3168/jds.2020-18274J. Dairy Sci. 2020; 103: 8615-8628
- Saccharomyces cerevisiaeboulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves..https://doi.org/10.3168/jds.2018-1614931155261J. Dairy Sci. 2019; 102: 7011-7025
- In vitro evaluation of nutrients that selectively confer a competitive advantage to lactobacilli..https://doi.org/10.3920/BM2015.004726689232Benef. Microbes. 2016; 7: 299-304
Wakelin, M. W., M. J. Sanz, A. Dewar, S. M. Albelda, S. W. Larkin, N. Boughton-Smith, T. J. Williams, and S. Nourshargh. 1996. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J. Exp. Med. 184:229–239. 10.1084/jem.184.1.229.
- Dairy calf management, morbidity, and mortality in Ontario Holstein herds. I. The data..https://doi.org/10.1016/0167-5877(86)90017-6Prev. Vet. Med. 1986; 4: 103-124
Wang, J., P. Sporns, and N. H. Low. 1999. Analysis of food oligosaccharides using MALDI-MS: Quantification of fructooligosaccharides. J. Agric. Food Chem. 47:1549–1557. 10.1021/jf9809380.
- Lactobacillus helveticus R0052 alleviates liver injury by modulating gut microbiome and metabolome in d-galactosamine-treated rats..https://doi.org/10.1007/s00253-019-10211-831713675Appl. Microbiol. Biotechnol. 2019; 103: 9673-9686
- Effect of dietary b-1,3/1,6-glucan supplementation on growth performance, immune response and plasma prostglandin E2, growth hormone and ghrelin in weaning piglets..Asian-Australas. J. Anim. 2008; 21: 707-714
Wen, T., and M. E. Rothenberg. 2016. The regulatory function of eosinophils. Microbiol. Spectr. 4. 10.1128/microbiolspec.MCHD-0020-2015.
- Canadian national dairy study: Heifer calf management..https://doi.org/10.3168/jds.2018-1468030172400J. Dairy Sci. 2018; 101 (a): 10565-10579
- Invited Review: Completeness of reporting of experiments REFLECTing on a year of animal trials in the Journal of Dairy Science..https://doi.org/10.3168/jds.2018-1579731005322J. Dairy Sci. 2019; 102: 4759-4771
- Effects of local anesthetic or systemic analgesia on pain associated with cautery disbudding in calves: A systematic review and meta-analysis..https://doi.org/10.3168/jds.2017-1409229550129J. Dairy Sci. 2018; 101 (b): 5411-5427
- Factors associated with morbidity, mortality, and growth of dairy heiger calves up to 3 months of age..https://doi.org/10.1016/j.prevetmed.2013.10.01924269039Prev. Vet. Med. 2014; 113: 231-240
- Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community..https://doi.org/10.3168/jds.2015-1056327157569J. Dairy Sci. 2016; 99: 5401-5412
- Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review..https://doi.org/10.5713/ajas.1995.553J. Anim. Sci. 1995; 8: 533-555
- Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants..6412205Pediatrics. 1983; 72: 317-321
- Growth, health, rumen fermentation, and bacterial community of Holstein calves fed Lactobacillus rhamnosus GG during the preweaning stage..https://doi.org/10.1093/jas/skz12630984974J. Anim. Sci. 2019; 97: 2598-2608
- Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves..https://doi.org/10.1111/jpn.1233825916246J. Anim. Physiol. Anim. Nutr. (Berl.). 2016; 100: 33-38
- Study on the effects of yeast culture on the digestibility and growing development in calves..J. Anim. Husb. Vet. Med. 2009; 30: 8-10
Zhu, F., B. Du, and B. Xu. 2016. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 52:275–288. 10.1016/j.foodhyd.2015.07.003.
Article info
Publication history
Footnotes
The authors declare no conflicts of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy