Advertisement
PRODUCTION AND MANAGEMENT: Original Research| Volume 36, ISSUE 5, P701-714, October 2020

Download started.

Ok

Dietary lysine-to-energy ratios for managing growth and pubertal development in replacement gilts*

      ABSTRACT

      Objective

      Our objectives were to determine growth rates, body composition, and pubertal development in replacement gilts fed diets with different ratios of standardized ileal digestible (SID) lysine to ME.

      Materials and Methods

      Diets with low, medium, and high ratios of SID lysine to ME (grower: 2.3, 2.6, and 2.8; finisher; 1.7, 1.9, and 2.1 g/Mcal) were fed from 100 to 200 d of age, after which gilts were moved from the gilt development unit to sow farms. Boar exposure and estrus detection began at 160 d of age and continued until first detected estrus. Estimates of BW and body composition were determined at 100, 142, 160, and 200 d of age and at puberty.

      Results and Discussion

      Body weights and growth rates were reduced (P < 0.05) as dietary SID lysine–to–ME ratio decreased. Greater SID lysine–to–ME ratios increased the number of gilts that exhibited estrus upon boar exposure, increased the number of gilts with a spontaneous first estrus, reduced the number of gilts requiring P.G.600 (Merck Animal Health, Kenilworth, NJ), and decreased age at first estrus (P < 0.05). Slower growing gilts that weighed less with less backfat were more likely to require P.G.600 to induce puberty (P < 0.05).

      Implications and Applications

      Reducing SID lysine–to–ME ratios in gilt diets can increase the number of gilts within optimal BW range at first estrus, but overall pubertal development is delayed if ratios are reduced below 2.8 and 2.1 g of SID lysine to megacalorie of ME in grower and finisher diets, respectively.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Amaral Filha W.S.
        • Bernardi M.L.
        • Wentz I.
        • Bortolozzo F.P.
        Growth rate and age at boar exposure as factors influencing gilt puberty..
        https://doi.org/10.1016/j.livsci.2008.04.009
        Livest. Sci. 2009; 120: 51-57
      1. Baidoo, S. K. 2001. Sow nutrition for productivity and longevity: Any new ideas? Pages 223–226 in Allen D. Leman Swine Conf. Univ. Minnesota, St. Paul, MN. http://hdl.handle.net/11299/148049.

        • Barnett S.M.
        • Trenhaile-Grannemann M.D.
        • Burkey T.E.
        • Miller P.S.
        • Ciobanu D.C.
        Effects of energy restriction during gilt development on parity 1 progeny growth performance..
        https://doi.org/10.2527/asasmw.2017.12.160
        J. Anim. Sci. 2017; 95: 76
        • Beltranena E.
        • Aherne F.X.
        • Foxcroft G.R.
        Innate variability in sexual development irrespective of body fatness in gilts..
        https://doi.org/10.2527/1993.712471x
        8440669
        J. Anim. Sci. 1993; 71: 471-480
        • Beltranena E.
        • Aherne F.X.
        • Foxcroft G.R.
        • Kirkwood R.N.
        Effects of pre- and postpubertal feeding on production traits at first and second estrus in gilts..
        https://doi.org/10.2527/1991.693886x
        2061258
        J. Anim. Sci. 1991; 69: 886-893
        • Bortolozzo F.P.
        • Bernardi M.L.
        • Kummer R.
        • Wentz I.
        Growth, body state and breeding performance in gilts and primiparous sows..
        19848294
        Soc. Reprod. Fertil. Suppl. 2009; 66: 281-291
      2. Burson, D. 2006. Procedures for estimating pork carcass composition. PIG 12-04-06, U.S. Pork Center of Excellence, Ames, IA. Accessed Apr. 25, 2019. http://porkgateway.org/resource/procedures-for-estimating-pork-carcass-composition/.

        • Calderón Díaz J.A.
        • Vallet J.L.
        • Prince T.J.
        • Phillips C.E.
        • DeDecker A.E.
        • Stalder K.J.
        Optimal dietary energy and amino acids for gilt development: Growth, body composition, feed intake, and carcass composition traits..
        https://doi.org/10.2527/jas.2014-8460
        26020896
        J. Anim. Sci. 2015; 93 (a): 1187-1199
        • Calderón Díaz J.A.
        • Vallet J.L.
        • Boyd R.D.
        • Lents C.A.
        • Prince T.J.
        • DeDecker A.E.
        • Phillips C.E.
        • Foxcroft G.
        • Stalder K.J.
        Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts..
        https://doi.org/10.1016/j.anireprosci.2017.06.007
        28711219
        Anim. Reprod. Sci. 2017; 184: 1-10
        • Calderón Díaz J.A.
        • Vallet J.L.
        • Lents C.A.
        • Nonneman D.J.
        • Miles J.R.
        • Wright E.C.
        • Rempel L.A.
        • Cushman R.A.
        • Freking B.A.
        • Rohrer G.A.
        • Phillips C.
        • DeDecker A.
        • Foxcroft G.
        • Stalder K.
        Age at puberty, ovulation rate, and uterine length of developing gilts fed two lysine and three metabolizable energy concentrations from 100 to 260 d of age..
        https://doi.org/10.2527/jas.2014-8522
        26440021
        J. Anim. Sci. 2015; 93 (b): 3521-3527
        • Campbell R.G.
        • Taverner M.R.
        • Curic D.M.
        Effect of feeding level and dietary protein content on the growth, body composition and rate of protein deposition in pigs growing from 45 to 90 kg..
        https://doi.org/10.1017/S0003356100002221
        Anim. Prod. 1984; 38: 233-240
        • Chang W.H.
        • Kim J.D.
        • Xuan Z.N.
        • Cho W.T.
        • Han I.K.
        • Chae B.J.
        • Paik I.K.
        Optimal lysine:DE ratio for growing pigs of different sexes..
        https://doi.org/10.5713/ajas.2000.31
        Asian-Australas. J. Anim. Sci. 2000; 13: 31-38
        • Cia M.C.
        • Edwards S.A.
        • Glasgow V.L.
        • Shanks M.
        • Fraser H.
        Modification of body composition by altering the dietary lysine to energy ratio during rearing and the effect on reproductive performance of gilts..
        https://doi.org/10.1017/S1357729800009619
        Anim. Sci. 1998; 66: 457-463
        • De La Llata M.
        • Dritz S.S.
        • Tokach M.D.
        • Goodband R.D.
        • Nelssen J.L.
        Effects of increasing lysine to calorie ratio and added dietary fat for growing-finishing pigs reared in a commercial environment: II. Modeling lysine to calorie ratio requirements using protein and lipid accretion curves..
        https://doi.org/10.15232/S1080-7446(15)30998-0
        Prof. Anim. Sci. 2007; 23: 429-437
        • Einarsson S.
        • Brandt Y.
        • Lundeheim N.
        • Madej A.
        Stress and its influence on reproduction in pigs: a review..
        https://doi.org/10.1186/1751-0147-50-48
        19077201
        Acta Vet. Scand. 2008; 50: 48
      3. FASS. 2010. Guide for the Care and Use of Agricultural Animals in Research and Teaching. Fed. Anim. Sci. Soc., Champaign, IL.

      4. Flowers, W. L., J. L. Vallet, and J. Cassady. 2015. Realize potential early. Pages 8–10 in National Hog Farmer, No. 60. Penton Media Inc., Overland Park, KS.

        • Friesen K.G.
        • Nelssen J.L.
        • Goodband R.D.
        • Tokach M.D.
        • Unruh J.A.
        • Kropf D.H.
        • Kerr B.J.
        Influence of dietary lysine on growth and carcass composition of high-lean-growth gilts fed from 34 to 72 kilograms..
        https://doi.org/10.2527/1994.7271761x
        7928756
        J. Anim. Sci. 1994; 72: 1761-1770
        • Friesen K.G.
        • Nelssen J.L.
        • Goodband R.D.
        • Tokach M.D.
        • Unruh J.A.
        • Kropf D.H.
        • Kerr B.J.
        The effect of dietary lysine on growth, carcass composition, and lipid metabolism in high-lean growth gilts fed from 72 to 136 kilograms..
        https://doi.org/10.2527/1995.73113392x
        8586599
        J. Anim. Sci. 1995; 73: 3392-3401
        • Gaughan J.B.
        • Cameron R.D.A.
        • Dryden G.M.
        • Josey M.J.
        Effect of selection for leanness on overall reproductive performance in Large White sows..
        https://doi.org/10.1017/S1357729800014144
        Anim. Sci. 1995; 61: 561-564
        • Hahn J.D.
        • Biehl R.R.
        • Baker D.H.
        Ideal digestible lysine level for early- and late-finishing swine..
        https://doi.org/10.2527/1995.733773x
        7608010
        J. Anim. Sci. 1995; 73: 773-784
      5. Kerr, B. J. 1993. Optimizing Lean Tissue Deposition in Swine. Biokyowa, Technical Review-6. Nutri-Quest, Chesterfield, MO.

        • Kirkwood R.N.
        • Aherne F.X.
        Energy intake, body composition and reproductive performance of the gilt..
        https://doi.org/10.2527/jas1985.6061518x
        3894311
        J. Anim. Sci. 1985; 60: 1518-1529
        • Klindt J.
        • Yen J.T.
        • Christenson R.K.
        Effect of prepubertal feeding regimen on reproductive development of gilts..
        https://doi.org/10.2527/1999.7781968x
        10461970
        J. Anim. Sci. 1999; 77: 1968-1976
        • Klindt J.
        • Yen J.T.
        • Christenson R.K.
        Effect of prepubertal feeding regimen on reproductive development and performance of gilts through the first pregnancy..
        https://doi.org/10.2527/2001.794787x
        11325181
        J. Anim. Sci. 2001; 79 (a): 787-795
        • Klindt J.
        • Yen J.T.
        • Christenson R.K.
        Level of dietary energy during prepubertal growth and reproductive development of gilts..
        https://doi.org/10.2527/2001.79102513x
        11721829
        J. Anim. Sci. 2001; 79 (b): 2513-2523
        • Knauer M.
        • Baitinger D.J.
        The sow body condition caliper..
        10.13031/aea.31.10632
        Appl. Eng. Agric. 2015; 31: 175-178
        • Knauer M.T.
        • Cassady J.P.
        • Newcom D.W.
        • See M.T.
        Phenotypic and genetic correlations between gilt estrus, puberty, growth, composition, and structural conformation traits with first-litter reproductive measures..
        https://doi.org/10.2527/jas.2009-2673
        21148777
        J. Anim. Sci. 2011; 89: 935-942
        • Lents C.A.
        • Rempel L.A.
        • Klindt J.
        • Wise T.
        • Nonneman D.
        • Freking B.A.
        The relationship of plasma urea nitrogen with growth traits and age at first estrus in gilts..
        https://doi.org/10.2527/jas.2012-5778
        23572260
        J. Anim. Sci. 2013; 91: 3137-3142
      6. Levis, D. G. 2000. Housing and management aspects influencing gilt development and longevity: A review. Pages 117–131 in Allen D. Leman Swine Conf. Univ. Minnesota, St. Paul, MN. http://hdl.handle.net/11299/147364.

        • Loughmiller J.A.
        • Nelssen J.L.
        • Goodband R.D.
        • Tokach M.D.
        • Titgemeyer E.C.
        • Kim I.H.
        Influence of dietary lysine on growth performance and carcass characteristics of late-finishing gilts..
        https://doi.org/10.2527/1998.7641075x
        9581931
        J. Anim. Sci. 1998; 76: 1075-1080
        • Main R.G.
        • Dritz S.S.
        • Tokach M.D.
        • Goodband R.D.
        • Nelssen J.L.
        Determining an optimum lysine:calorie ratio for barrows and gilts in a commercial finishing facility..
        https://doi.org/10.2527/jas.2007-0408
        18469046
        J. Anim. Sci. 2008; 86: 2190-2207
        • Miller P.S.
        • Moreno R.
        • Johnson R.K.
        Effects of restricting energy during the gilt developmental period on growth and reproduction of lines differing in lean growth rate: responses in feed intake, growth, and age at puberty..
        https://doi.org/10.2527/jas.2010-3111
        20971891
        J. Anim. Sci. 2011; 89: 342-354
      7. NASEM (National Academies of Sciences, Engineering, and Medicine). 2012. Nutrient Requirements of Swine. 11th rev. ed. Natl. Acad. Press, Washington, DC.

        • O’Connell M.K.
        • Lynch P.B.
        • O’Doherty J.V.
        Determination of the optimum dietary lysine concentration for boars and gilts penned in pairs and in groups in the weight range 60 to 100 kg..
        https://doi.org/10.1079/ASC20056
        Anim. Sci. 2006; 82: 65-73
        • Patterson J.
        • Triemert E.
        • Gustafson B.
        • Werner T.
        • Holden N.
        • Pinilla J.C.
        • Foxcroft G.
        Validation of the use of exogenous gonadotropins (PG600) to increase the efficiency of gilt development programs without affecting lifetime productivity in the breeding herd..
        https://doi.org/10.2527/jas.2015-9705
        27065151
        J. Anim. Sci. 2016; 94: 805-815
        • Patterson J.L.
        • Ball R.O.
        • Willis H.J.
        • Aherne F.X.
        • Foxcroft G.R.
        The effect of lean growth rate on puberty attainment in gilts..
        https://doi.org/10.2527/2002.8051299x
        12019619
        J. Anim. Sci. 2002; 80: 1299-1310
      8. Rozeboom, D. W. 1999. Feeding programs for gilt development and longevity. Pages 159–170 in 60th Minnesota Nutr. Conf. and Zinpro Tech. Symp., Bloomington, MN. Ext. Serv., Univ. Minnesota, St. Paul, MN.

        • Shelton N.W.
        • Tokach M.D.
        • Dritz S.S.
        • Goodband R.D.
        • Nelssen J.L.
        • DeRouchey J.M.
        Effects of increasing dietary standardized ileal digestible lysine for gilts grown in a commercial finishing environment..
        https://doi.org/10.2527/jas.2010-3030
        21666007
        J. Anim. Sci. 2011; 89: 3587-3595
        • Soede N.M.
        • van Sleuwen M.J.W.
        • Molenaar R.
        • Rietveld F.W.
        • Schouten W.P.G.
        • Hazeleger W.
        • Kemp B.
        Influence of repeated regrouping on reproduction in gilts..
        10.1016/j.anireprosci.2005.12.004
        Anim. Reprod. Sci. 2006; 96: 133-145
      9. Sorensen, M. T., B. Jorgensen, and V. Danielsen. 1993. Different Feeding Intensity of Young Gilts: Effect on Growth, Milk Yield, Reproduction, Leg Soundness, and Longevity. Report No. 14/1993. Natl. Inst. Anim. Sci., Foulum, Denmark.

      10. Stalder, K. 2006. Non-genetic factors influencing sow longevity. PIG 08-04-02, US Pork Center of Excellence, Ames, IA. Accessed Apr. 24, 2019. http://porkgateway.org/resource/non-genetic-factors-influencing-sow-longevity/.

        • Stalder K.
        • Knauer M.
        • Baas T.
        • Rothschild M.F.
        • Mabry J.
        Sow longevity..
        Pig News Inform. 2004; 25: 53-74
        • Stalder K.J.
        • Saxton A.M.
        • Conatser G.E.
        • Serenius T.V.
        Effect of growth and compositional traits on first parity and lifetime reproductive performance in U.S. Landrace sows..
        https://doi.org/10.1016/j.livprodsci.2005.03.009
        Livest. Prod. Sci. 2005; 97: 151-159
        • Tarrés J.
        • Tibau J.
        • Piedrafita J.
        • Fàbrega E.
        • Reixach J.
        Factors affecting longevity in maternal Duroc swine lines..
        https://doi.org/10.1016/j.livprodsci.2005.08.007
        Livest. Sci. 2006; 100: 121-131
      11. Vallet, J. L. 2015. Growth and nutrition effects on gilt development. National Hog Farmer Blueprint No. 60. Penton Media Inc., Overland Park, KS.

      12. Whitney, M. H., and C. Masker. 2010. Replacement gilt and boar nutrient recommendations and feeding management, US Pork Center of Excellence, Ames, IA. Accessed Apr. 25, 2019. https://www.usporkcenter.org/national-swine-nutrition-guide/.

        • Wijesena H.R.
        • Lents C.A.
        • Riethoven J.-J.
        • Trenhaile-Grannemann M.D.
        • Thorson J.F.
        • Keel B.N.
        • Miller P.S.
        • Spangler M.L.
        • Kachman S.D.
        • Ciobanu D.C.
        Genomics Symposium: Using genomic approaches to uncover sources of variation in age at puberty and reproductive longevity in sows..
        https://doi.org/10.2527/jas2016.1334
        28992028
        J. Anim. Sci. 2017; 95: 4196-4205
        • Williams N.H.
        • Patterson J.
        • Foxcroft G.
        Non-negotiables in gilt development..
        Adv. Pork Prod. 2005; 16: 281-289
        • Winkel S.M.
        • Trenhaile-Grannemann M.D.
        • Van Sambeek D.M.
        • Miller P.S.
        • Salcedo J.
        • Barile D.
        • Burkey T.E.
        Effects of energy restriction during gilt development on milk nutrient profile, milk oligosaccharides, and progeny biomarkers..
        https://doi.org/10.1093/jas/sky212
        29860339
        J. Anim. Sci. 2018; 96: 3077-3088
      13. Zier-Rush, C. E., D. S. Rosero, C. Neil, S. Jungst, and R. D. Boyd. 2013. Financial and Growth Optimum Lysine Curves Determined on a Population-Basis for Growing PIC Pigs (45–300 lbs b.w.). Hanor Res. Memo H 2013-07. The Hanor Co., Spring Green, WI.