Advertisement

Transcriptomic analysis of peripheral leukocytes in dairy cows with and without evidence of metritis and associated early postpartum disease

      ABSTRACT

      Objective

      The aim of this study was to describe associations between peripheral leukocyte gene expression and early postpartum disease in dairy cows with clinical metritis.

      Materials and Methods

      The study was conducted in a conventional dairy in Washington state. Diseased cows ≤14 DIM were enrolled (n = 11) based on evidence of clinical metritis with or without comorbidity or prior treatments. Healthy cows (n = 9) were selected based on comparative DIM and lactation numbers to diseased cows. Blood was collected for a complete blood count, serum biochemistry, leukocyte isolation, and RNA extraction at enrollment and twice more at 6- to 8-d intervals.

      Results and Discussion

      A total of 34,625 genes were considered and 55 were associated with health status by the Boruta all-relevant feature machine learning selection algorithm. These were filtered to the 15 most representative genes within the diseased cohort as compared with the healthy cohort. The top ranked gene during every rank or error test was PGLYRP1. Its associated protein, peptidoglycan recognition protein 1, and other immunomodulatory molecules associated with this study selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses.

      Implications and Applications

      Host-defense peptides such as those associated with this study provide insight into individual and population-level markers of disease resilience that may help improve therapeutics, guide genetic selection, and clarify the burden of disease on animal well-being. This is particularly relevant to the dairy cow transition period with its metabolic and physiologic changes and associated increase in disease susceptibility.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Aleri J.W.
        • Hine B.C.
        • Pyman M.F.
        • Mansell P.D.
        • Wales W.J.
        • Mallard B.
        • Fisher A.D.
        Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period..
        https://doi.org/10.1016/j.rvsc.2016.07.007
        27663364
        Res. Vet. Sci. 2016; 108: 8-17
        • Bernstein E.
        • Allis C.D.
        RNA meets chromatin..
        https://doi.org/10.1101/gad.1324305
        16024654
        Genes Dev. 2005; 19: 1635-1655
        • Bolger A.M.
        • Lohse M.
        • Usadel B.
        Trimmomatic: A flexible trimmer for Illumina sequence data..
        https://doi.org/10.1093/bioinformatics/btu170
        24695404
        Bioinformatics. 2014; 30: 2114-2120
        • Bromfield J.J.
        • Watt M.M.
        • Iacovides S.M.
        Characterisation of peripheral blood mononuclear cell populations in periparturient dairy cows that develop metritis..
        https://doi.org/10.1016/j.vetimm.2018.04.010
        29776614
        Vet. Immunol. Immunopathol. 2018; 200: 69-75
        • Bruun J.
        • Ersbøll A.K.
        • Alban L.
        Risk factors for metritis in Danish dairy cows..
        https://doi.org/10.1016/S0167-5877(02)00026-0
        12069780
        Prev. Vet. Med. 2002; 54: 179-190
        • Burton J.L.
        • Madsen S.A.
        • Chang L.-C.
        • Weber P.S.D.
        • Buckham K.R.
        • van Dorp R.
        • Hickey M.-C.
        • Earley B.
        Gene expression signatures in neutrophils exposed to glucocorticoids: A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows..
        https://doi.org/10.1016/j.vetimm.2005.02.012
        15808301
        Vet. Immunol. Immunopathol. 2005; 105: 197-219
        • Cho S.
        • Wang Q.
        • Swaminathan C.P.
        • Hesek D.
        • Lee M.
        • Boons G.J.
        • Mobashery S.
        • Mariuzza R.A.
        Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins..
        https://doi.org/10.1073/pnas.0701453104
        17502600
        Proc. Natl. Acad. Sci. USA. 2007; 104: 8761-8766
      1. Collins, L. M., and S. T. Lanza. 2010. Latent class and latent transition analysis with applications in the social behavioral, and health sciences. John Wiley & Sons Inc., Hoboken, NJ.

        • Crookenden M.A.
        • Moyes K.M.
        • Kuhn-Sherlock B.
        • Lehnert K.
        • Walker C.G.
        • Loor J.J.
        • Mitchell M.D.
        • Murray A.
        • Dukkipati V.S.R.
        • Vailati-Riboni M.
        • Heiser A.
        • Roche J.R.
        Transcriptomic analysis of circulating neutrophils in metabolically stressed peripartal grazing dairy cows..
        https://doi.org/10.3168/jds.2019-16367
        31178180
        J. Dairy Sci. 2019; 102: 7408-7420
        • Düvel A.
        • Maass J.
        • Heppelmann M.
        • Hussen J.
        • Koy M.
        • Piechotta M.
        • Sandra O.
        • Smith D.G.E.
        • Sheldon I.M.
        • Dieuzy-Labaye I.
        • Zieger P.
        • Schuberth H.J.
        Peripheral blood leukocytes of cows with subclinical endometritis show an altered cellular composition and gene expression..
        https://doi.org/10.1016/j.theriogenology.2014.01.007
        24560452
        Theriogenology. 2014; 81: 906-917
        • Eshed Y.
        • Feinberg K.
        • Poliak S.
        • Sabanay H.
        • Sarig-Nadir O.
        • Spiegel I.
        • Bermingham Jr., J.R.
        • Peles E.
        Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier..
        https://doi.org/10.1016/j.neuron.2005.06.026
        16039564
        Neuron. 2005; 47: 215-229
        • Esposito G.
        • Irons P.C.
        • Webb E.C.
        • Chapwanya A.
        Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows..
        https://doi.org/10.1016/j.anireprosci.2013.11.007
        24378117
        Anim. Reprod. Sci. 2014; 144: 60-71
        • Fang L.
        • Sahana G.
        • Su G.
        • Yu Y.
        • Zhang S.
        • Lund M.S.
        • Sorensen P.
        Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle..
        https://doi.org/10.1038/srep45560
        28358110
        Sci. Rep. 2017; 7: 45560
      2. Ficklin, S., and A. Feltus. 2018. SystemsGenetics/FUNC-E v1.0 (Version v1.0). Zenodo, CERN, Geneve, Switzerland. 10.5281/zenodo.1246882.

        • Flower D.R.
        • North A.C.T.
        • Sansom C.E.
        The lipocalin protein family: Structural and sequence overview..
        https://doi.org/10.1016/S0167-4838(00)00148-5
        11058743
        Biochim. Biophys. Acta. 2000; 1482: 9-24
        • Galvão K.N.
        • Bicalho R.C.
        • Jeon S.J.
        Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows..
        https://doi.org/10.3168/jds.2019-17106
        31587913
        J. Dairy Sci. 2019; 102: 11786-11797
        • Galvão K.N.
        • Felippe M.J.B.
        • Brittin S.B.
        • Sper R.
        • Fraga M.
        • Galvão J.S.
        • Caixeta L.
        • Guard C.L.
        • Ricci A.
        • Gilbert R.O.
        Evaluation of cytokine expression by blood monocytes of lactating Holstein cows with or without postpartum uterine disease..
        https://doi.org/10.1016/j.theriogenology.2011.08.008
        21924475
        Theriogenology. 2012; 77: 356-372
        • Gavrieli M.
        • Watanabe N.
        • Loftin S.K.
        • Murphy T.L.
        • Murphy K.M.
        Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2..
        https://doi.org/10.1016/j.bbrc.2003.11.070
        14652006
        Biochem. Biophys. Res. Commun. 2003; 312: 1236-1243
      3. GE (General Electric). 2010. Isolation of mononuclear cells methodology and applications. GE Healthcare Bio-Sciences Corp. Accessed Feb. 2018. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/General_Information/1/ge-isolation-of-mononuclear-cells.pdf.

      4. Gene Ontology Consortium. 2015. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43(D1):D1049–D1056. https://doi.org/10.1093/nar/gku1179.

        • Gilbert R.O.
        • Santos N.R.
        Dynamics of postpartum endometrial cytology and bacteriology and their relationship to fertility in dairy cows..
        https://doi.org/10.1016/j.theriogenology.2015.10.045
        26944540
        Theriogenology. 2016; 85: 1367-1374
      5. GMB (Genomic Medicine Biorepository). 2016. RNA and miRNA isolation from human peripheral blood. Genomic Medicine Biorepository Protocol GMB003rB: 20090216NP. Accessed Feb. 2018. https://www.lerner.ccf.org/gmi/gmb/documents/GMB003Blood_RNAIsolation_v2016.pdf.

        • Goetz D.H.
        • Holmes M.A.
        • Borregaard N.
        • Bluhm M.E.
        • Raymond K.N.
        • Strong R.K.
        The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition..
        https://doi.org/10.1016/S1097-2765(02)00708-6
        12453412
        Mol. Cell. 2002; 10: 1033-1043
      6. Hadish, J., T. Biggs, B. Shealy, C. Wytko, S. P. Oruganti, A. Feltus, and S. Ficklin. 2020. SystemsGenetics/GEMmaker: Release v1.1. Zenodo, CERN, Geneve, Switzerland. 10.5281/zenodo.3620945.

        • Hammon D.S.
        • Evjen I.M.
        • Dhiman T.R.
        • Goff J.P.
        • Walters J.L.
        Neutrophil function and energy status in Holstein cows with uterine health disorders..
        https://doi.org/10.1016/j.vetimm.2006.03.022
        16740320
        Vet. Immunol. Immunopathol. 2006; 113: 21-29
        • Hancock R.E.
        Cationic peptides: Effectors in innate immunity and novel antimicrobials..
        https://doi.org/10.1016/S1473-3099(01)00092-5
        11871492
        Lancet Infect. Dis. 2001; 1: 156-164
        • Hart S.N.
        • Therneau T.M.
        • Zhang Y.
        • Poland G.A.
        • Kocher J.-P.
        Calculating sample size estimates for RNA sequencing data..
        https://doi.org/10.1089/cmb.2012.0283
        23961961
        J. Comput. Biol. 2013; 20: 970-978
        • Heiser A.
        • McCarthy A.
        • Wedlock N.
        • Meier S.
        • Kay J.
        • Walker C.
        • Crookenden M.A.
        • Mitchell M.D.
        • Morgan S.
        • Watkins K.
        • Loor J.J.
        • Roche J.R.
        Grazing dairy cows had decreased interferon-gamma, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving..
        https://doi.org/10.3168/jds.2014-8494
        25483203
        J. Dairy Sci. 2015; 98: 937-946
        • Huang W.
        • Sherman B.T.
        • Lempicki R.A.
        Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources..
        https://doi.org/10.1038/nprot.2008.211
        19131956
        Nat. Protoc. 2009; 4: 44-57
        • Huang W.
        • Long N.
        • Khatib H.
        Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data..
        https://doi.org/10.1111/j.1365-2052.2012.02325.x
        22497321
        Anim. Genet. 2012; 43: 674-682
        • Hurchla M.A.
        • Sedy J.R.
        • Murphy K.M.
        Unexpected role of B and T lymphocyte attenuator in sustaining cell survival during chronic allostimulation..
        https://doi.org/10.4049/jimmunol.178.10.6073
        17475832
        J. Immunol. 2007; 178: 6073-6082
        • Ingvartsen K.
        • Moyes K.
        Factors contributing to immunosuppression in the dairy cow during the periparturient period..
        10.14943/jjvr.63.suppl.s15
        25872323
        Jpn. J. Vet. Res. 2015; 63: S15-S24
        • Jeon S.J.
        • Vieira-Neto A.
        • Gobikrushanth M.
        • Daetz R.
        • Mingoti R.D.
        • Parize A.C.B.
        • de Freitas S.L.
        • da Costa A.N.L.
        • Bicalho R.C.
        • Lima S.
        • Jeong K.C.
        • Galvão K.N.
        Uterine microbiota progression from calving until establishment of metritis in dairy cows..
        https://doi.org/10.1128/AEM.01753-15
        26150453
        Appl. Environ. Microbiol. 2015; 81: 6324-6332
        • Kashyap D.R.
        • Wang M.
        • Liu L.H.
        • Boons G.J.
        • Gupta D.
        • Dziarski R.
        Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems..
        https://doi.org/10.1038/nm.2357
        21602801
        Nat. Med. 2011; 17: 676-683
        • Kong S.E.
        • Banks C.A.
        • Shilatifard A.
        • Conaway J.W.
        • Conaway R.C.
        ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL..
        https://doi.org/10.1073/pnas.0503017102
        16006523
        Proc. Natl. Acad. Sci. USA. 2005; 102: 10094-10098
        • Koufariotis L.T.
        • Chen Y.-P.P.
        • Chamberlain A.
        • Vander Jagt C.
        • Hayes B.J.
        A catalogue of novel bovine long noncoding RNA across 18 tissues..
        https://doi.org/10.1371/journal.pone.0141225
        26496443
        PLoS One. 2015; 10 (e0141225)
        • Krieg C.
        • Han P.
        • Stone R.
        • Goularte O.D.
        • Kaye J.
        Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells..
        https://doi.org/10.4049/jimmunol.175.10.6420
        16272294
        J. Immunol. 2005; 175: 6420-6427
        • Kuhns D.B.
        • Long Priel D.A.
        • Chu J.
        • Zarember K.A.
        Isolation and functional analysis of human neutrophils..
        10.1002/0471142735.im0723s111
        Curr. Protoc. Immunol. 2015; 111: 7.23.1-7.23.16
        • Kursa M.
        • Rudnicki W.
        Feature selection with Boruta package..
        https://doi.org/10.18637/jss.v036.i11
        J. Stat. Softw. 2010; 36: 1-13
        • Kvidera S.K.
        • Horst E.A.
        • Abuajamieh M.
        • Mayorga E.J.
        • Fernandez M.V.S.
        • Baumgard L.H.
        Glucose requirements of an activated immune system in lactating Holstein cows..
        https://doi.org/10.3168/jds.2016-12001
        28041733
        J. Dairy Sci. 2017; 100: 2360-2374
        • Ledgard A.M.
        • Smolenski G.A.
        • Henderson H.
        • Lee R.S.
        Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles..
        https://doi.org/10.1071/RD13144
        24331367
        Reprod. Fertil. Dev. 2015; 27: 395-406
        • Lee Y.
        • Clinton J.
        • Yao C.
        • Chang S.H.
        Interleukin-17D promotes pathogenicity during infection by suppressing CD8 T cell activity..
        https://doi.org/10.3389/fimmu.2019.01172
        31244826
        Front. Immunol. 2019; 10: 1172
      7. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

        • Madsen S.A.
        • Chang L.C.
        • Hickey M.C.
        • Rosa G.J.
        • Coussens P.M.
        • Burton J.L.
        Microarray analysis of gene expression in blood neutrophils of parturient cows..
        https://doi.org/10.1152/physiolgenomics.00121.2003
        14583595
        Physiol. Genomics. 2004; 16: 212-221
        • Madsen S.A.
        • Weber P.S.D.
        • Burton J.L.
        Altered expression of cellular genes in neutrophils of periparturient dairy cows..
        https://doi.org/10.1016/S0165-2427(02)00020-X
        12007882
        Vet. Immunol. Immunopathol. 2002; 86: 159-175
        • Maqbool M.
        • Vidyadaran S.
        • George E.
        • Ramasamy R.
        Optimisation of laboratory procedures for isolating human peripheral blood derived neutrophils..
        22299545
        Med. J. Malaysia. 2011; 66: 296-299
        • Martinez N.
        • Risco C.A.
        • Lima F.S.
        • Bisinotto R.S.
        • Greco L.F.
        • Ribeiro E.S.
        • Maunsell F.
        • Galvao K.
        • Santos J.E.
        Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease..
        https://doi.org/10.3168/jds.2012-5812
        23021755
        J. Dairy Sci. 2012; 95: 7158-7172
        • Mookherjee N.
        • Hancock R.E.
        Cationic host defense peptides: Innate immune regulatory peptides as a novel approach for treating infections..
        https://doi.org/10.1007/s00018-007-6475-6
        17310278
        Cell. Mol. Life Sci. 2007; 64: 922-933
        • Moore S.G.
        • Ericsson A.C.
        • Poock S.E.
        • Melendez P.
        • Lucy M.C.
        Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus..
        https://doi.org/10.3168/jds.2017-12592
        28434745
        J. Dairy Sci. 2017; 100: 4953-4960
        • Mukasa A.
        • Wykosky J.
        • Ligon K.L.
        • Chin L.
        • Cavenee W.K.
        • Furnari F.
        Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence..
        https://doi.org/10.1073/pnas.0914356107
        20133782
        Proc. Natl. Acad. Sci. USA. 2010; 107: 2616-2621
        • Paape M.J.
        • Bannerman D.D.
        • Zhao X.
        • Lee J.W.
        The bovine neutrophil: Structure and function in blood and milk..
        https://doi.org/10.1051/vetres:2003024
        14556697
        Vet. Res. 2003; 34: 597-627
        • Pant S.D.
        • Verschoor C.P.
        • Schenkel F.S.
        • You Q.
        • Kelton D.F.
        • Karrow N.A.
        Bovine PGLYRP1 polymorphisms and their association with resistance to Mycobacterium avium ssp. paratuberculosis..
        https://doi.org/10.1111/j.1365-2052.2010.02153.x
        21749417
        Anim. Genet. 2011; 42: 354-360
        • Pappu R.
        • Ramirez-Carrozzi V.
        • Sambandam A.
        The interleukin-17 cytokine family: Critical players in host defense and inflammatory diseases..
        https://doi.org/10.1111/j.1365-2567.2011.03465.x
        21726218
        Immunology. 2011; 134: 8-16
        • Pascottini O.B.
        • LeBlanc S.J.
        Modulation of immune function in the bovine uterus peripartum..
        https://doi.org/10.1016/j.theriogenology.2020.01.042
        31987594
        Theriogenology. 2020; 150: 193-200
        • Pathak R.
        • Prasad S.
        • Kumaresan A.
        • Kaur M.
        • Manimaran A.
        • Dang A.K.
        Alterations in cortisol concentrations and expression of certain genes associated with neutrophil functions in cows developing retention of fetal membranes..
        https://doi.org/10.1016/j.vetimm.2015.09.003
        26384698
        Vet. Immunol. Immunopathol. 2015; 168: 164-168
        • Pedregosa A.F.
        • Varoquaux G.
        • Gramfort A.
        • Michel V.
        • Thirion B.
        • Grisel O.
        • Blondel M.
        • Prettenhofer P.
        • Weiss R.
        • Dubourg V.
        Scikit-learn: Machine learning in Python..
        J. Mach. Learn. Res. 2011; 12: 2825-2830
        • Pertea M.
        • Kim D.
        • Pertea G.M.
        • Leek J.T.
        • Salzberg S.L.
        Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown..
        https://doi.org/10.1038/nprot.2016.095
        27560171
        Nat. Protoc. 2016; 11: 1650-1667
        • Pessia M.
        • Tucker S.J.
        • Lee K.
        • Bond C.T.
        • Adelman J.P.
        Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels..
        https://doi.org/10.1002/j.1460-2075.1996.tb00661.x
        8670799
        EMBO J. 1996; 15: 2980-2987
        • Pinedo P.J.
        • Galvão K.N.
        • Seabury C.M.
        Innate immune gene variation and differential susceptibility to uterine diseases in Holstein cows..
        https://doi.org/10.1016/j.theriogenology.2013.04.027
        23768650
        Theriogenology. 2013; 80: 384-390
        • Pokorska J.
        • Piestrzyńska-Kajtoch A.
        • Kułaj D.
        • Ochrem A.
        • Radko A.
        Polymorphism of bovine lipocalin-2 gene and its impact on milk production traits and mastitis in Holstein Friesian cattle..
        https://doi.org/10.1016/j.ejbt.2019.04.004
        Electron. J. Biotechnol. 2019; 40: 17-21
        • Potter T.J.
        • Guitian J.
        • Fishwick J.
        • Gordon P.J.
        • Sheldon I.M.
        Risk factors for clinical endometritis in postpartum dairy cattle..
        https://doi.org/10.1016/j.theriogenology.2010.01.023
        20207407
        Theriogenology. 2010; 74: 127-134
      8. Python. 2019. boruta_py. Accessed Jun. 2019. https://github.com/scikit-learn-contrib/boruta_py.

        • Ribeiro E.S.
        • Lima F.S.
        • Greco L.F.
        • Bisinotto R.S.
        • Monteiro A.P.
        • Favoreto M.
        • Ayres H.
        • Marsola R.S.
        • Martinez N.
        • Thatcher W.W.
        • Santos J.E.
        Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates..
        https://doi.org/10.3168/jds.2012-6335
        23831093
        J. Dairy Sci. 2013; 96: 5682-5697
        • Santos T.M.A.
        • Gilbert R.O.
        • Bicalho R.C.
        Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows..
        https://doi.org/10.3168/jds.2010-3668
        21183039
        J. Dairy Sci. 2011; 94: 291-302
        • Schmidt-Ott K.M.
        • Mori K.
        • Li J.Y.
        • Kalandadze A.
        • Cohen D.J.
        • Devarajan P.
        • Barasch J.
        Dual action of neutrophil gelatinase–associated lipocalin..
        https://doi.org/10.1681/ASN.2006080882
        17229907
        J. Am. Soc. Nephrol. 2007; 18: 407-413
        • Schroeder A.
        • Mueller O.
        • Stocker S.
        • Salowsky R.
        • Leiber M.
        • Gassmann M.
        • Lightfoot S.
        • Menzel W.
        • Granzow M.
        • Ragg T.
        The RIN: An RNA integrity number for assigning integrity values to RNA measurements..
        https://doi.org/10.1186/1471-2199-7-3
        16448564
        BMC Mol. Biol. 2006; 7: 3
        • Seabury C.M.
        • Womack J.E.
        Analysis of sequence variability and protein domain architectures for bovine peptidoglycan recognition protein 1 and Toll-like receptors 2 and 6..
        https://doi.org/10.1016/j.ygeno.2008.06.005
        18639626
        Genomics. 2008; 92: 235-245
        • Seo J.
        • Osorio J.S.
        • Loor J.J.
        Purinergic signaling gene network expression in bovine polymorphonuclear neutrophils during the peripartal period..
        https://doi.org/10.3168/jds.2013-6952
        24119811
        J. Dairy Sci. 2013; 96: 7675-7683
        • Sheldon I.M.
        • Cronin J.
        • Goetze L.
        • Donofrio G.
        • Schuberth H.-J.
        Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle..
        https://doi.org/10.1095/biolreprod.109.077370
        19439727
        Biol. Reprod. 2009; 81: 1025-1032
        • Sheldon I.M.
        • Lewis G.S.
        • LeBlanc S.
        • Gilbert R.O.
        Defining postpartum uterine disease in cattle..
        https://doi.org/10.1016/j.theriogenology.2005.08.021
        16226305
        Theriogenology. 2006; 65: 1516-1530
        • Sheldon I.M.
        • Cronin J.G.
        • Bromfield J.J.
        Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle..
        https://doi.org/10.1146/annurev-animal-020518-115227
        30359085
        Annu. Rev. Anim. Biosci. 2019; 7: 361-384
        • Sordillo L.M.
        Nutritional strategies to optimize dairy cattle immunity..
        https://doi.org/10.3168/jds.2015-10354
        26830740
        J. Dairy Sci. 2016; 99: 4967-4982
        • Sordillo L.M.
        • Aitken S.L.
        Impact of oxidative stress on the health and immune function of dairy cattle..
        https://doi.org/10.1016/j.vetimm.2008.10.305
        19027173
        Vet. Immunol. Immunopathol. 2009; 128: 104-109
        • Sordillo L.M.
        • Contreras G.A.
        • Aitken S.L.
        Metabolic factors affecting the inflammatory response of periparturient dairy cows..
        https://doi.org/10.1017/S1466252309990016
        19558749
        Anim. Health Res. Rev. 2009; 10: 53-63
        • Spreu J.
        • Kuttruff S.
        • Stejfova V.
        • Dennehy K.M.
        • Schittek B.
        • Steinle A.
        Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes..
        https://doi.org/10.1073/pnas.0913108107
        20194751
        Proc. Natl. Acad. Sci. USA. 2010; 107: 5100-5105
      9. The UniProt Consortium. 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47(D1):D506–D515. 10.1093/nar/gky1049.

        • Tomasinsig L.
        • De Conti G.
        • Skerlavaj B.
        • Piccinini R.
        • Mazzilli M.
        • D’Este F.
        • Tossi A.
        • Zanetti M.
        Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis..
        https://doi.org/10.1128/IAI.01090-09
        20100862
        Infect. Immun. 2010; 78: 1781-1788
        • Trevisi E.
        • Zecconi A.
        • Bertoni G.
        • Piccinini R.
        Blood and milk immune and inflammatory profiles in periparturient dairy cows showing a different liver activity index..
        https://doi.org/10.1017/S0022029910000178
        20576169
        J. Dairy Res. 2010; 77: 310-317
        • Tydell C.C.
        • Yount N.
        • Tran D.
        • Yuan J.
        • Selsted M.E.
        Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils..
        https://doi.org/10.1074/jbc.M200659200
        11880375
        J. Biol. Chem. 2002; 277: 19658-19664
        • Tydell C.C.
        • Yuan J.
        • Tran P.
        • Selsted M.E.
        Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties..
        https://doi.org/10.4049/jimmunol.176.2.1154
        16394004
        J. Immunol. 2006; 176: 1154-1162
        • Wachter K.
        • Kohn M.
        • Stohr N.
        • Huttelmaier S.
        Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains..
        https://doi.org/10.1515/hsz-2013-0111
        23640942
        Biol. Chem. 2013; 394: 1077-1090
        • Wang H.L.
        • Li Z.X.
        • Wang L.J.
        • He H.
        • Yang J.
        • Chen L.
        • Niu F.B.
        • Liu Y.
        • Guo J.Z.
        • Liu X.L.
        Polymorphism in PGLYRP-1 gene by PCR-RFLP and its association with somatic cell score in Chinese Holstein..
        https://doi.org/10.1016/j.rvsc.2013.06.005
        23820447
        Res. Vet. Sci. 2013; 95: 508-514
        • Wang J.W.
        • Howson J.
        • Haller E.
        • Kerr W.G.
        Identification of a novel lipopolysaccharide-inducible gene with key features of both A kinase anchor proteins and chs1/beige proteins..
        https://doi.org/10.4049/jimmunol.166.7.4586
        11254716
        J. Immunol. 2001; 166: 4586-4595
        • Wang K.C.
        • Chang H.Y.
        Molecular mechanisms of long noncoding RNAs..
        https://doi.org/10.1016/j.molcel.2011.08.018
        21925379
        Mol. Cell. 2011; 43: 904-914
        • Wang M.
        • Liu L.H.
        • Wang S.
        • Li X.
        • Lu X.
        • Gupta D.
        • Dziarski R.
        Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides..
        https://doi.org/10.4049/jimmunol.178.5.3116
        17312159
        J. Immunol. 2007; 178: 3116-3125
        • Wapinski O.
        • Chang H.Y.
        Long noncoding RNAs and human disease..
        https://doi.org/10.1016/j.tcb.2011.04.001
        21550244
        Trends Cell Biol. 2011; 21: 354-361
        • Watanabe N.
        • Gavrieli M.
        • Sedy J.R.
        • Yang J.
        • Fallarino F.
        • Loftin S.K.
        • Hurchla M.A.
        • Zimmerman N.
        • Sim J.
        • Zang X.
        • Murphy T.L.
        • Russell J.H.
        • Allison J.P.
        • Murphy K.M.
        BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1..
        https://doi.org/10.1038/ni944
        12796776
        Nat. Immunol. 2003; 4: 670-679
        • Whelehan C.J.
        • Barry-Reidy A.
        • Meade K.G.
        • Eckersall P.D.
        • Chapwanya A.
        • Narciandi F.
        • Lloyd A.T.
        • O’Farrelly C.
        Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue..
        https://doi.org/10.1186/1471-2164-15-128
        24524771
        BMC Genomics. 2014; 15: 128
        • Whitehead J.
        • Pandey G.K.
        • Kanduri C.
        Regulation of the mammalian epigenome by long noncoding RNAs..
        10.1016/j.bbagen.2008.10.007
        19015002
        Biochim. Biophys. Acta. 2009; 1790: 936-947
        • Yokoyama W.M.
        • Plougastel B.F.
        Immune functions encoded by the natural killer gene complex..
        https://doi.org/10.1038/nri1055
        12669021
        Nat. Rev. Immunol. 2003; 3: 304-316