Effects of adding live Saccharomyces cerevisiae and Aspergillus-based enzyme extracts on ruminal fermentation, plasma polyamine concentrations, and fiber digestibility in beef steers fed a high-forage diet



      We evaluated the effects of adding live Saccharomyces cerevisiae (SC) and Aspergillus-based extract (ABE) on rumen fermentation, plasma polyamine concentrations, and in vitro fiber digestibility in beef steers fed mixed red clover–orchardgrass hay.

      Materials and Methods

      Eight rumen-cannulated Angus crossbred beef steers were assigned to 4 treatments arranged in a replicated 4 × 4 Latin square design with four 21-d periods. Dietary treatments were (1) control (CON; basal diet without additive), (2) SC (CON + 15 g/d of live SC), (3) ABE (5 g of ABE), and (4) SC+ABE (15 g/d of live SC + 5 g of ABE). On d 21, blood samples were collected before morning feeding for plasma metabolome analysis (including polyamines such as spermines, spermidine, and putrescine). Rumen fluid samples were collected 3, 6, and 9 h after feeding for analysis of VFA, ammonia-N concentrations, and in vitro DM and NDF digestibility.

      Results and Discussion

      Compared with CON, neither SC nor ABE had effects (P > 0.10) on rumen fermentation and in vitro digestibility. In contrast, SC+ABE increased (P ≤ 0.05) the ruminal concentrations of acetate, butyrate, and total VFA and in vitro DM and NDF digestibilities. Both SC and SC+ABE increased (P < 0.05) plasma concentrations of spermidine, spermine, and kynurenine.

      Implications and Applications

      Supplementation of SC with or without ABE to forage-fed beef steers increased plasma concentrations of polyamines and kynurenine, a possible indication of improved immune function; however, combining SC and ABE, but not SC alone, improved the rumen fermentation and in vitro fiber digestibility.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adesogan A.T.
        • Krueger N.K.
        • Kim S.C.
        A novel, wireless, automated system for measuring fermentation gas production kinetics of feeds and its application to feed characterization..
        Anim. Feed Sci. Technol. 2005; 123–124: 211-223
        • Alugongo G.M.
        • Xiao J.
        • Wu Z.
        • Li S.
        • Wang Y.
        • Cao Z.
        Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves..
        J. Anim. Sci. Biotechnol. 2017; 8: 34
        • AlZahal O.
        • Dionissopoulos L.
        • Laarman A.H.
        • Walker N.
        • McBride B.W.
        Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows..
        J. Dairy Sci. 2014; 97: 7751-7763
        • Aschenbach J.R.
        • Kristensen N.B.
        • Donkin S.S.
        • Hammon H.M.
        • Penner G.B.
        Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough..
        IUBMB Life. 2010; 62: 869-877
        • Beauchemin K.A.
        • Colombatto D.
        • Morgavi D.P.
        A rationale for the development of feed EFE products for ruminants..
        Can. J. Anim. Sci. 2004; 84: 23-36
        • Chaucheyras F.
        • Fonty G.
        • Bertin G.
        • Gouet P.
        In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae..
        Appl. Environ. Microbiol. 1995; 61: 3466-3467
        • Desnoyers M.
        • Giger-Reverdin S.
        • Bertin G.
        • Duvaux-Ponter C.
        • Sauvant D.
        Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants..
        J. Dairy Sci. 2009; 92: 1620-1632
        • Ding G.
        • Chang Y.
        • Zhao L.
        • Zhou Z.
        • Ren L.
        • Meng Q.
        Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios..
        J. Anim. Sci. Biotechnol. 2014; 5: 24
        • Duff G.C.
        • Galyean M.L.
        Board-invited review: Recent advances in management of highly stressed, newly received feedlot cattle..
        J. Anim. Sci. 2007; 85: 823-840
        • Elghandour M.M.Y.
        • Tan Z.L.
        • Abu Hafsa S.H.
        • Adegbeye M.J.
        • Greiner R.
        • Ugbogu E.A.
        • Cedillo Monroy J.
        • Salem A.Z.M.
        Saccharomyces cerevisiae as a probiotic feed additive to non- and pseudo-ruminant feeding: A review..
        J. Appl. Microbiol. 2019; 128: 658-674
        • Finck D.
        • Ribeiro F.
        • Burdick N.
        • Parr S.
        • Carroll J.
        • Young T.
        • Bernhard B.
        • Corley J.
        • Estefan A.
        • Rathmann R.
        • Johnson B.J.
        Yeast supplementation alters the performance and health status of receiving cattle..
        Prof. Anim. Sci. 2014; 30: 333-341
        • Genestet C.
        • Le Gouellec A.
        • Chaker H.
        • Polack B.
        • Guery B.
        • Toussaint B.
        • Stasia M.J.
        Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing..
        Free Radic. Biol. Med. 2014; 73: 400-410
      1. Goering, M. K., and P. J. Van Soest. 1970. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agricultural Handbook 379. USDA ARS, Washington, DC.

        • Gomez-Alarcon R.A.
        • Huber J.T.
        • Higginbotham G.E.
        • Wiersma F.
        • Ammon D.
        • Taylor B.
        Influence of feeding Aspergillus oryzae fermentation extract on the milk yields, eating patterns, and body temperatures of lactating cows..
        J. Anim. Sci. 1991; 69: 1733-1740
        • Hall M.B.
        Comparisons of in vitro fermentation and high moisture forage processing methods for determination of neutral detergent fiber digestibility..
        Anim. Feed Sci. Technol. 2015; 199: 127-136
      2. Lodemann, U. 2010. Effects of probiotics on intestinal transport and epithelial barrier function. Pages 303–333 in Bioactive Foods in Promoting Health. R. R. Watson and V. R. Preedy, ed. Acad. Press, Boston, MA. 10.1016/j.anifeedsci.2014.11.012.

        • McAllister T.
        • Beauchemin K.A.
        • Alazzeh A.
        • Baah J.
        • Teather R.
        • Stanford K.
        Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle..
        Can. J. Anim. Sci. 2011; 91: 193-211
        • Miao J.
        • Wang M.
        • Ma L.
        • Li T.
        • Huang Q.
        • Liu D.
        • Shen Q.
        Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: Insights into performance, transcriptional, and proteomic profiles..
        Biotechnol. Biofuels. 2019; 12: 4
        • Ogunade I.M.
        • Lay J.
        • Andries K.
        • McManus C.J.
        • Bebe F.
        Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle..
        J. Anim. Sci. Biotechnol. 2019; 10: 68
        • Poppy G.D.
        • Rabiee A.R.
        • Lean I.J.
        • Sanchez W.K.
        • Dorton K.L.
        • Morley P.S.
        A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows..
        J. Dairy Sci. 2012; 95: 6027-6041
        • Sallam S.M.A.
        • Abdelmalek M.L.R.
        • Kholif A.E.
        • Zahran S.M.
        • Ahmed M.H.
        • Zeweil H.S.
        • Attia M.F.A.
        • Matloup O.H.
        • Olafadehan O.A.
        The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows..
        Anim. Biotechnol. 2020; 31: 491-497
        • Soulet D.
        • Rivest S.
        Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system..
        J. Cell Biol. 2003; 162: 257-268
        • Van Soest P.J.
        • Robertson J.B.
        • Lewis B.A.
        Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition..
        J. Dairy Sci. 1991; 74: 3583-3597
        • Varel V.H.
        • Kreikemeier K.K.
        • Jung H.J.G.
        • Hatfield R.D.
        In vitro stimulation of forage fiber degradation by ruminal microorganisms with Aspergillus oryzae fermentation extract..
        Appl. Environ. Microbiol. 1993; 59: 3171-3176
        • Williams P.E.V.
        • Tait C.A.G.
        • Innes C.A.G.
        • Newbold C.J.
        Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers..
        J. Anim. Sci. 1991; 69: 3016-3026
        • Zhang G.
        • Dervishi E.
        • Dunn S.M.
        • Mandal R.
        • Liu P.
        • Han B.
        • Wishart D.S.
        • Ametaj B.N.
        Metabotyping reveals distinct metabolic alterations in ketotic cows and identifies early predictive serum biomarkers for the risk of disease..
        Metabolomics. 2017; 13: 43

      CHORUS Manuscript

      View Open Manuscript