Advertisement

Nutritive value, silage fermentation characteristics, and aerobic stability of round-baled, alfalfa–grass forages ensiled at 2 moisture concentrations with or without a propionic-acid-based preservative*

      ABSTRACT

      Objective

      Propionic-acid-based products are used commonly for storage of dry hay but are not often considered when ensiling baled forages. The objectives for this study were to test several application rates of a propionic-acid-based preservative on the storage efficiency, nutrient preservation, fermentation characteristics, and aerobic stability of alfalfa–grass silages.

      Materials and Methods

      This study evaluated 4 preservative treatments applied to alfalfa–grass forages that had received 5.1 mm of unexpected rainfall during wilting. A propionic-acid-based preservative was applied at rates of 0.01 (control), 0.13, 0.44, or 0.80% of wet bale weight to 24 (1.2 × 1.2 m) round bales made at either 43.6 or 51.6% moisture. Aerobic stability was then evaluated by removing plastic film from all bales and monitoring surface bale temperatures for 11 d during spring. After exposure, surface and core samples were evaluated further for residual fermentation products and pH.

      Results and Discussion

      Before fermentation, forage pH declined linearly (P < 0.001) from 6.14 to 5.77 with increasing product-application rates. After 242 d of storage, there were linear increases in concentrations of total alcohols (P = 0.002), and particularly 2,3-butanediol (P < 0.001), with increasing preservative application rates. After aerobic exposure, maximum surface temperatures (0.15-m depth) declined linearly (P = 0.001) from 55.6 to 17.9°C with preservative application rate. A similar linear (P = 0.002) effect was observed for exposed surface pH (range = 6.52 to 5.41).

      Implications and Applications

      Propionic-acid-based preservatives improved aerobic stability of round-bale silages, but the additional cost must be a critical component of any overall management strategy.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

      1. AOAC International. 1998. Official Methods of Analysis. AOAC Official Method #990.03. 16th ed. 4th rev. AOAC Int., Gaithersburg, MD.

        • Britt D.G.
        • Huber J.T.
        Preservation of and animal performance on high moisture corn treated with ammonia or propionic acid..
        https://doi.org/10.3168/jds.S0022-0302(76)84256-7
        J. Dairy Sci. 1976; 59: 668-674
        • Coblentz W.K.
        • Akins M.S.
        Nutritive value and fermentation characteristics of round-baled alfalfa-orchardgrass forages ensiled at various moisture concentrations with or without baler cutting engagement..
        https://doi.org/10.15232/aas.2018-01837
        Appl. Anim. Sci. 2019; 35: 135-145
        • Coblentz W.K.
        • Akins M.S.
        • Cavadini J.S.
        Fermentation characteristics and nutritive value of baled grass silages made from meadow fescue, tall fescue, or an orchardgrass cultivar exhibiting a unique non-flowering growth response..
        https://doi.org/10.3168/jds.2019-17387
        32008784
        J. Dairy Sci. 2020; 103: 3219-3233
        • Coblentz W.K.
        • Cavadini J.S.
        Effects of seeding rate on the dry matter yield and nutritive value of fall-oat. Online..
        10.2134/ctfm2016.0004
        Crop. Forage Turfgrass Mgmt. 2016; 2 (a)
        • Coblentz W.K.
        • Muck R.E.
        Effects of natural and simulated rainfall on indicators of ensilability and nutritive value for wilting alfalfa forages sampled before preservation as silage..
        https://doi.org/10.3168/jds.2012-5672
        22939790
        J. Dairy Sci. 2012; 95: 6635-6653
        • Coblentz W.K.
        • Ogden R.K.
        • Akins M.S.
        • Chow E.A.
        Storage characteristics, nutritive value, and fermentation characteristics of large-round bales of alfalfa-mixed grass forage wrapped with different layers of stretch film..
        https://doi.org/10.15232/pas.2016-01538
        Prof. Anim. Sci. 2016; 32 (b): 805-815
        • Coblentz W.K.
        • Ogden R.K.
        • Akins M.S.
        • Chow E.A.
        Nutritive value and fermentation characteristics of alfalfa-mixed grass forage wrapped with minimal stretch film layers and stored for different lengths of time..
        https://doi.org/10.3168/jds.2016-12404
        28527804
        J. Dairy Sci. 2017; 100: 5293-5304
        • Collins M.
        The influence of wetting on the composition of alfalfa, red clover, and birdsfoot trefoil hay..
        https://doi.org/10.2134/agronj1982.00021962007400060025x
        Agron. J. 1982; 74: 1041-1044
        • da Silva N.C.
        • Nascimento C.F.
        • Nascimento F.A.
        • de Resende F.D.
        • Daniel J.L.P.
        • Siqueira G.R.
        Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici..
        https://doi.org/10.3168/jds.2017-13797
        29454688
        J. Dairy Sci. 2018; 101: 4158-4167
        • Daniel J.L.P.
        • Weiss K.
        • Custodio L.
        • Sa Neto A.
        • Santos M.C.
        • Zopollatto M.
        • Nussio L.G.
        Occurrence of volatile organic compounds in sugarcane silages..
        https://doi.org/10.1016/j.anifeedsci.2013.06.011
        Anim. Feed Sci. Technol. 2013; 185: 101-105
        • Dewar W.A.
        • McDonald P.
        • Whittenbury R.
        The hydrolysis of grass hemicelluloses during ensilage..
        https://doi.org/10.1002/jsfa.2740140610
        J. Sci. Food Agric. 1963; 14: 411-417
        • DuBois M.
        • Gilles K.A.
        • Hamilton J.K.
        • Rebers P.A.
        • Smith F.
        Colorimetric method for determination of sugars and related substances..
        https://doi.org/10.1021/ac60111a017
        Anal. Chem. 1956; 28: 350-356
        • Goering H.K.
        • Gordon C.H.
        Chemical aids to preservation of high moisture feeds..
        https://doi.org/10.3168/jds.S0022-0302(73)85360-3
        J. Dairy Sci. 1973; 56: 1347-1351
        • Gomes A.L.M.
        • Jacovaci F.A.
        • Bolson D.C.
        • Nussio L.G.
        • Jobim C.C.
        • Daniel J.L.P.
        Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage..
        https://doi.org/10.1016/j.anifeedsci.2018.11.016
        Anim. Feed Sci. Technol. 2019; 247: 194-198
        • Huber J.T.
        • Soejono M.
        Organic acid treatment of high dry matter corn silage fed to lactating cows..
        https://doi.org/10.3168/jds.S0022-0302(76)84488-8
        J. Dairy Sci. 1976; 59: 2063-2070
      2. Jennings, J. A. 2011. Baled silage for livestock. #FSA3051-PD-4-11RV. University of Arkansas Cooperative Extension Service, Little Rock, AR.

        • Krom M.D.
        Spectrophotometric determination of ammonia: A study of modified Berthelot reaction using salicylate and dichloroisocyanurate..
        https://doi.org/10.1039/an9800500305
        Analyst (Lond.). 1980; 105: 305-316
        • Kung Jr., L.
        • Sheperd A.C.
        • Smagala A.M.
        • Endres K.M.
        • Bessett C.A.
        • Ranjit N.K.
        • Glancey J.L.
        The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration..
        https://doi.org/10.3168/jds.S0022-0302(98)75695-4
        9621235
        J. Dairy Sci. 1998; 81: 1322-1330
      3. Mahanna, B., and L. E. Chase. 2003. Practical applications and solutions to silage problems. Pages 855–895 in Silage Science and Technology. D. R. Buxton, R. E. Muck, and J. H. Harrison, ed. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. 10.2134/agronmonogr42.c19.

      4. McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The Biochemistry of Silage. 2nd edition. Chalcombe Publ., Marlow, Buckinghamshire, UK.

        • Mills J.A.
        • Kung Jr., L.
        The effect of delayed ensiling and application of a propionic acid-based additive on the fermentation of barley silage..
        https://doi.org/10.3168/jds.S0022-0302(02)74273-2
        12214989
        J. Dairy Sci. 2002; 85: 1969-1975
        • Muck R.E.
        • O’Kiely P.
        Aerobic deterioration of lucerne (Medicago sativa) and maize (Zea mais) silages—Effects of fermentation products..
        https://doi.org/10.1002/jsfa.2740590203
        J. Sci. Food Agric. 1992; 59: 145-149
      5. Muck, R. E., and R. P. Walgenbach. 1985. Variations in alfalfa buffering capacity. ASAE Paper No. 85–1535. Am. Soc. Agric. Eng., St. Joseph, MI.

      6. NASEM. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. 10.17226/9825

        • Nicholson J.W.G.
        • McQueen R.E.
        • Charmley E.
        • Bush R.S.
        Forage conservation in round bales or silage: Effect on ensiling characteristics and animal performance..
        https://doi.org/10.4141/cjas91-138
        Can. J. Anim. Sci. 1991; 71: 1167-1180
      7. Pahlow, G., R. E. Muck, F. Driehuis, S. J. W. H. Oude Elferink, and S. F. Spoelstra. 2003. Microbiology of ensiling. Pages 31–93 in Silage Science and Technology. D. R. Buxton, R. E. Muck, and J. H. Harrison, ed. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. 10.2134/agronmonogr42.c2

        • Pitt R.E.
        • Liu Y.
        • Muck R.E.
        Simulation of the effect of additives on aerobic stability of alfalfa and corn silages..
        https://doi.org/10.13031/2013.31781
        Trans. ASAE. 1991; 34: 1633-1641
      8. Rooke, J. A., and R. D. Hatfield. 2003. Biochemistry of ensiling. Pages 95–139 in Silage Science and Technology. D. R. Buxton, R. E. Muck, and J. H. Harrison, ed. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. 10.2134/agronmonogr42.c3.

        • Scarbrough D.A.
        • Coblentz W.K.
        • Humphry J.B.
        • Coffey K.P.
        • Daniel T.C.
        • Sauer T.J.
        • Jennings J.A.
        • Turner J.E.
        • Kellogg D.W.
        Evaluation of dry matter loss, nutritive value, and in situ dry matter disappearance for wilting orchardgrass and bermudagrass forages damaged by simulated rainfall..
        https://doi.org/10.2134/agronj2005.0604
        Agron. J. 2005; 97: 604-614
        • Searle P.L.
        The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen..
        https://doi.org/10.1039/an9840900549
        Analyst (Lond.). 1984; 109: 549-568
      9. Shinners, K. J. 2003. Engineering principles of silage harvesting management. Pages 361–404 in Silage Science and Technology. D. R. Buxton, R. E. Muck, and J. H. Harrison, ed. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. 10.2134/agronmonogr42.c8.

        • Siemerink M.A.J.
        • Kuit W.
        • Lopez Contreras A.M.
        • Eggink G.
        • van der Oost J.
        • Kengen S.W.M.
        D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum..
        https://doi.org/10.1128/AEM.01616-10
        21335380
        Appl. Environ. Microbiol. 2011; 77: 2582-2588
        • Stallings C.C.
        • Townes R.
        • Jesse B.W.
        • Thomas J.W.
        Changes in alfalfa haylage during wilting and ensiling with and without additives..
        https://doi.org/10.2527/jas1981.533765x
        J. Anim. Sci. 1981; 53: 765-773
        • Van Soest P.J.
        • Robertson J.B.
        • Lewis B.A.
        Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition..
        https://doi.org/10.3168/jds.S0022-0302(91)78551-2
        1660498
        J. Dairy Sci. 1991; 74: 3583-3597
        • Voelker H.H.
        • Schingoethe D.J.
        • Drackley J.K.
        • Clark A.K.
        High-moisture corn preserved by different methods for lactating cows..
        https://doi.org/10.3168/jds.S0022-0302(85)81143-7
        J. Dairy Sci. 1985; 68: 2602-2607
        • Weiss W.P.
        • Conrad H.R.
        • Pierre N.R.
        A theoretically-based model for predicting total digestible nutrient values of forages and concentrates..
        https://doi.org/10.1016/0377-8401(92)90034-4
        Anim. Feed Sci. Technol. 1992; 39: 95-110

      CHORUS Manuscript

      View Open Manuscript