Advertisement
NUTRITION:Original Research| Volume 38, ISSUE 1, P1-12, February 2022

Download started.

Ok

Effects of feeding different forms of lysine supplements on lactational performance and nitrogen utilization by mid- to late-lactation dairy cows

      ABSTRACT

      Objective

      We investigated the lactational performance and N utilization of dairy cows fed different forms of Lys supplements with the main focus on Lys derivatives ofN-acetyl-l-Lys (NALL) during mid to late lactation.

      Materials and Methods

      Forty lactating Holstein dairy cows (151 ± 78.0 DIM) were assigned to 1 of 4 treatments (n = 10) in a randomized complete block design. The 4 dietary treatments were as follows: (1) TMR without Lys supplementation (control), (2) TMR withNε-acetyl-l-Lys supplementation at 51.5 g/d (εNALLT), (3) TMR withNα, ε-acetyl-l-Lys supplementation at 63 g/d (diNALLT), and (4) TMR with commercial rumen-protected Lys (AjiPro-L, Ajinomoto Heartland Inc.) supplementation at 100 g/d (CRPLT).

      Results and Discussion

      Feeding of diNALLT and the CRPLT decreased DMI. Milk yield, component yield, and component concentrations were not affected by Lys supplementation. In contrast, feed conversion efficiency (milk yield/DMI) was greatest for diNALLT. The efficiencies of 3.5% FCM yield/DMI and ECM yield/DMI did not differ among treatments. Feeding the diNALLT and the CRPLT tended to reduce manure N excretion compared with the control and the εNALLT. Overall, results from the current study suggest that supplementing a Lys derivative, diNALL, to mid- to late-lactation dairy cows resulted in similar production performance relative to a commercial rumen-protected Lys product.

      Implications and Applications

      A sizable increase in feed conversion efficiency (milk yield/DMI) and a trend for a reduction in manure N excretion when cows were supplemented with diNALL resulted from its effect to reduce DMI and N intake. This result indicates that the developmental diNALL product is metabolically active in lactating dairy cows. Further investigation is warranted to understand the biological availabilities of NALL in lactating dairy cows.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Allen M.S.
        Review: Control of feed intake by hepatic oxidation in ruminant animals: Integration of homeostasis and homeorhesis..
        https://doi.org/10.1017/S1751731119003215
        32024573
        Animal. 2020; 14: s55-s64
        • Amaro F.X.
        • Arriola K.G.
        • Jiang Y.
        • Kim D.
        • Cervantes A.P.
        • Silva V.P.
        • Agarussi M.C.N.
        • Silva J.T.
        • Adesogan A.T.
        • Ferraretto L.F.
        • Staples C.R.
        • Eun J.-S.
        • Park J.S.
        • Moon J.O.
        • Vyas D.
        Lactational performance of dairy cows in response to supplementingN-acetyl-l-methionine as a source of rumen protected methionine..
        J. Dairy Sci. 2019; 101 (Abstr.): 15
      1. AOAC International. 2000. Official Methods of Analysis. Vol. 1 and 2. 17th ed. AOAC Int.

        • Bernard J.
        • Chandler P.
        • Sniffen C.
        • Chalupa W.
        Response of cows to rumen-protected lysine after peak lactation..
        https://doi.org/10.15232/pas.2014-01307
        Prof. Anim. Sci. 2014; 30: 407-412
        • Bjarnason J.
        • Carpenter U.K.
        Mechanism of heat damage in protein. 2. Chemical changes in pure proteins..
        https://doi.org/10.1079/BJN19700031
        5424268
        Br. J. Nutr. 1970; 24: 313-329
        • Blauwiekel R.
        • Xu S.
        • Harrison J.H.
        • Loney K.A.
        • Riley R.E.
        • Calhoun M.C.
        Effect of whole cottonseed, gossypol, and ruminally protected lysine supplementation on milk yield and composition..
        https://doi.org/10.3168/jds.S0022-0302(97)76064-8
        9241597
        J. Dairy Sci. 1997; 80: 1358-1365
        • Broderick G.A.
        • Stevenson M.J.
        • Patton R.A.
        Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows..
        https://doi.org/10.3168/jds.2008-1277
        19448006
        J. Dairy Sci. 2009; 92: 2719-2728
        • Daniel J.L.P.
        • Amaral R.C.
        • Sá Neto A.
        • Cabezas-Garcia E.H.
        • Bispo A.W.
        • Zopollatto M.
        • Cardoso T.L.
        • Spoto M.H.F.
        • Santos F.A.P.
        • Nussio L.G.
        Performance of dairy cows fed high levels of acetic acid or ethanol..
        https://doi.org/10.3168/jds.2012-5451
        23141834
        J. Dairy Sci. 2013; 96: 398-406
        • Dijkstra J.
        • van Gastelen S.
        • Dieho K.
        • Nichols K.
        • Bannink A.
        Review: Rumen sensors: Data and interpretation for key rumen metabolic processes..
        https://doi.org/10.1017/S1751731119003112
        Animal. 2020; 14: s176-s186
        • Doepel L.
        • Pacheco D.
        • Kennelly J.J.
        • Hanigan M.D.
        • Lopez I.F.
        • Lapierre H.
        Milk protein synthesis as a function of amino acid supply..
        https://doi.org/10.3168/jds.S0022-0302(04)73278-6
        15290976
        J. Dairy Sci. 2004; 87: 1279-1297
        • Eun J.S.
        • Beauchemin K.A.
        Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes..
        https://doi.org/10.3168/jds.2006-820
        17517724
        J. Dairy Sci. 2007; 90: 2839-2851
        • Fagundes M.A.
        • Yang S.Y.
        • Eun J.-S.
        • Hall J.O.
        • Moon J.O.
        • Park J.S.
        Influence of supplementing a methionine derivative,N-acetyl-l-methionine, in dairy diets on production and ruminal fermentation by lactating cows during early to mid lactation..
        https://doi.org/10.3168/jds.2017-14130
        29729912
        J. Dairy Sci. 2018; 101: 7082-7094
      2. Finot, P.-A., F. Mottu, E. Bujard, and J. Mauron. 1978. N-substituted lysines as sources of lysine in nutrition. Pages 549–570 in Nutrition Improvement of Food and Feed Proteins.Springer.

        • Geishauser T.
        An instrument for the collection and transfer of ruminal fluid and for the administration of water soluble drugs in adult cattle..
        https://doi.org/10.21423/bovine-vol1993no27p27-42
        Bov. Pract. 1993; 27: 38-42
        • Girma D.D.
        • Ma L.
        • Wang F.
        • Jiang Q.R.
        • Callaway T.R.
        • Drackley J.K.
        • Bu D.P.
        Effects of close-up dietary energy level and supplementing rumen-protected lysine on energy metabolites and milk production in transition cows..
        https://doi.org/10.3168/jds.2018-15962
        31178198
        J. Dairy Sci. 2019; 102: 7059-7072
        • Hippen A.R.
        • Kalscheur K.F.
        • Schingoethe D.J.
        • Garcia A.D.
        Increasing inclusion of dried corn distillers grains in dairy cow diets.
        J. Dairy Sci. 2004; 87 (Abstr.): 1965
        • Hristov A.N.
        • Price W.J.
        • Shafii B.
        A meta-analysis examining the relationship among dietary factors, dry matter intake, and milk and milk protein yield in dairy cows..
        https://doi.org/10.3168/jds.S0022-0302(04)70039-9
        15328233
        J. Dairy Sci. 2004; 87: 2184-2196
        • Huhtanen P.
        • Hristov A.N.
        A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows..
        https://doi.org/10.3168/jds.2008-1352
        19528599
        J. Dairy Sci. 2009; 92: 3222-3232
        • Huhtanen P.
        • Nousiainen J.I.
        • Rinne M.
        • Kytola K.
        • Khalili H.
        Utilization and partition of dietary nitrogen in dairy cows fed grass silage-based diets..
        https://doi.org/10.3168/jds.2008-1181
        18765617
        J. Dairy Sci. 2008; 91: 3589-3599
        • Jacobs S.
        Practical experiences with L-carnitine..
        Lohmann Inf. Int. 2002; 26: 21-24
        • Ji P.
        • Tucker H.A.
        • Clark R.E.
        • Miura M.
        • Ballard C.S.
        Short communication: Effect of on-farm feeding practices on rumen protected lysine products..
        https://doi.org/10.3168/jds.2014-9197
        26627863
        J. Dairy Sci. 2016; 99: 1242-1246
        • Kauffman A.J.
        • St-Pierre N.R.
        The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows..
        https://doi.org/10.3168/jds.S0022-0302(01)74675-9
        11699460
        J. Dairy Sci. 2001; 84: 2284-2294
        • Knudsen K.E.B.
        Carbohydrate and lignin contents of plant materials used in animal feeding..
        https://doi.org/10.1016/S0377-8401(97)00009-6
        Anim. Feed Sci. Technol. 1997; 67: 319-338
        • Leclerc J.
        • Benoiton L.
        Further studies on ε-lysine acylase. The ω-N-acyl-diamino acid hydrolase activity of avian kidney..
        10.1139/o68-071
        5658148
        Can. J. Biochem. 1968; 46: 471-475
        • Lee C.
        • Giallongo F.
        • Hristov A.N.
        • Lapierre H.
        • Cassidy T.W.
        • Heyler K.S.
        • Varga G.A.
        • Parys C.
        Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows..
        https://doi.org/10.3168/jds.2014-8496
        25547302
        J. Dairy Sci. 2015; 98: 1885-1902
        • Leonardi C.
        • Stevenson M.
        • Armentano L.E.
        Effect of two levels of crude protein and methionine supplementation on performance of dairy cows..
        https://doi.org/10.3168/jds.S0022-0302(03)74014-4
        14740841
        J. Dairy Sci. 2003; 86: 4033-4042
        • Liang S.L.
        • Wei Z.H.
        • Wu J.J.
        • Dong X.L.
        • Liu J.X.
        • Wang D.M.
        Effect ofN-acetyl-l-methionine supplementation on lactation performance and plasma variables in mid-lactating dairy cows..
        https://doi.org/10.3168/jds.2018-15716
        30904299
        J. Dairy Sci. 2019; 102: 5182-5190
      3. Linn, J. G., and J. D. Olson. 1995. Using milk urea nitrogen to evaluate diets and reproductive performance of dairy cattle. Pages 155–167 in Proc. Four-State Appl. Nutr. Manage. Conf. Univ. Wisconsin.

      4. Menchu, S. 2019. Ruminal protection and intestinal availability of rumen-protected methionine and lysine in lactating dairy cows. MS Thesis. Dept. Anim., Dairy, Vet. Sci., Utah State Univ., Logan.

      5. NASEM (National Academies of Sciences, Engineering, and Medicine). 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press.

        • Neal K.
        • Eun J.-S.
        • Young A.J.
        • Mjoun K.
        • Hall J.O.
        Feeding protein supplements in alfalfa hay-based lactation diets improves nutrient utilization, lactational performance, and feed efficiency of dairy cows..
        https://doi.org/10.3168/jds.2014-8033
        25262186
        J. Dairy Sci. 2014; 97: 7716-7728
        • Neuberger A.
        • Sanger F.
        The availability of the acetyl derivatives of lysine for growth..
        https://doi.org/10.1042/bj0370515
        16747684
        Biochem. J. 1943; 37: 515-518
        • Paik W.K.
        • Benoiton L.
        Purification and properties of hog kidney ε-lysine acylase..
        https://doi.org/10.1139/o63-187
        13941107
        Can. J. Biochem. Physiol. 1963; 41: 1643-1654
        • Paz H.A.
        • Kononoff P.J.
        Lactation responses and amino acid utilization of dairy cows fed low-fat distillers dried grains with solubles with or without rumen-protected lysine supplementation..
        https://doi.org/10.3168/jds.2014-8315
        25108862
        J. Dairy Sci. 2014; 97: 6519-6530
        • Rhine E.D.
        • Mulvaney R.L.
        • Pratt E.J.
        • Sims G.K.
        Improving the Berthelot reaction for determining ammonium in soil extracts and water..
        https://doi.org/10.2136/sssaj1998.03615995006200020026x
        Soil Sci. Soc. Am. J. 1998; 62: 473-480
      6. Robinson, P. H. 2009. Can manipulating ration metabolizable protein amino acid levels really be expected to effect environmental impacts of cows? Pages 34–46 in Proc. Southwest Nutr. Conf. Univ. Arizona.

        • Robinson P.H.
        Impacts of manipulating ration metabolizable lysine and methionine levels on the performance of lactating dairy cows: A systemic review of the literature..
        https://doi.org/10.1016/j.livsci.2009.10.003
        Livest. Sci. 2010; 127: 115-126
        • Robinson P.H.
        • Swanepoel N.
        • Evans E.
        Effects of feeding a ruminally protected lysine product, with or without isoleucine, valine and histidine, to lactating dairy cows on their productive performance and plasma amino acid profiles..
        https://doi.org/10.1016/j.anifeedsci.2010.07.017
        Anim. Feed Sci. Technol. 2010; 161: 75-84
        • Robinson P.H.
        • Swanepoel N.
        • Shinzato I.
        • Juchem S.O.
        Productive responses of lactating dairy cattle to supplementing high levels of ruminally protected lysine using a rumen protection technology..
        https://doi.org/10.1016/j.anifeedsci.2011.03.019
        Anim. Feed Sci. Technol. 2011; 168: 30-41
        • Schingoethe D.J.
        • Kalscheur K.F.
        • Hippen A.R.
        • Garcia A.D.
        Invited review: The use of distillers products in dairy cattle diets..
        https://doi.org/10.3168/jds.2009-2549
        19923586
        J. Dairy Sci. 2009; 92: 5802-5813
      7. Schwab, C. G., R. S. Ordway, and N. L. Whitehouse. 2004. Amino acid balancing in the context of MP and RUP requirements. Pages 10–25 in Florida Ruminant Nutr. Symp. Univ. Florida.

        • Shug A.L.
        • Schmidt M.J.
        • Golden G.T.
        • Fariello R.G.
        The distribution and role of carnitine in the mammalian brain..
        https://doi.org/10.1016/0024-3205(82)90677-4
        7162355
        Life Sci. 1982; 31: 2869-2874
        • Swanepoel N.
        • Robinson P.H.
        • Erasmus L.
        Amino acid needs of lactating dairy cows: impact of feeding lysine in a ruminally protected form on productivity of lactating dairy cows..
        https://doi.org/10.1016/j.anifeedsci.2010.02.008
        Anim. Feed Sci. Technol. 2010; 157: 79-94
        • Třináctý J.
        • Křížová L.
        • Richter M.
        • Černý V.
        • Říha J.
        Effect of rumen-protected methionine, lysine or both on milk production and plasma amino acids of high-yielding dairy cows..
        https://doi.org/10.17221/1730-CJAS
        Czech J. Anim. Sci. 2009; 54: 239-248
        • Van Amburgh M.E.
        • Collao-Saenz E.A.
        • Higgs R.J.
        • Ross D.A.
        • Recktenwald E.B.
        • Raffrenato E.
        • Chase L.E.
        • Overton T.R.
        • Mills J.K.
        • Foskolos A.
        The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5..
        https://doi.org/10.3168/jds.2015-9378
        26142847
        J. Dairy Sci. 2015; 98: 6361-6380
        • Van Soest P.J.
        • Robertson J.B.
        • Lewis B.A.
        Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition..
        https://doi.org/10.3168/jds.S0022-0302(91)78551-2
        1660498
        J. Dairy Sci. 1991; 74: 3583-3597
        • Vaz F.M.
        • Wanders R.J.A.
        Carnitine biosynthesis in mammals..
        https://doi.org/10.1042/bj3610417
        11802770
        Biochem. J. 2002; 361: 417-429
        • Wallace R.J.
        Acetylation of peptides inhibits their degradation by rumen micro-organisms..
        https://doi.org/10.1079/BJN19920095
        1445818
        Br. J. Nutr. 1992; 68: 365-372
        • Wang C.
        • Liu H.Y.
        • Wang Y.M.
        • Yang Z.Q.
        • Liu J.X.
        • Wu Y.M.
        • Yan T.
        • Ye H.W.
        Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows..
        https://doi.org/10.3168/jds.2009-2750
        20655436
        J. Dairy Sci. 2010; 93: 3661-3670
        • Wang C.
        • Liu J.X.
        • Zhai S.W.
        • Lai J.L.
        • Wu Y.M.
        Effects of rumen-degradable-protein to rumen-undegradable-protein ratio on nitrogen conversion of lactating dairy cows..
        https://doi.org/10.1080/09064700802187210
        Acta Agric. Scand. A Anim. Sci. 2008; 58: 100-103
        • Whitehouse N.L.
        • Schwab C.G.
        • Brito A.F.
        The plasma free amino acid dose-response technique: A proposed methodology for determining lysine relative bioavailability of rumen-protected lysine supplements..
        https://doi.org/10.3168/jds.2017-12695
        28964520
        J. Dairy Sci. 2017; 100: 9585-9601