Advertisement
PHYSIOLOGY:Original Research| Volume 38, ISSUE 1, P22-32, February 2022

Download started.

Ok

Morphological and physiological measures as predictors of age at puberty and conception in beef heifer genotypes

      ABSTRACT

      Objective

      This study examined the utility of postweaning morphological and physiological measures as predictors of age of puberty and conception in beef heifers.

      Materials and Methods

      Data were used from 309 spring-born heifer progeny [initial age 231 d (SD = 16); BW 256 kg (SD = 52)] of beef and dairy dams sired by early-maturing (EM) or late-maturing (LM) breeds and bred (12 wk) to calve at 24 mo of age within a grass-based production system. Body weight, composition and linear measurements, blood metabolites, pubertal age, and pregnancy were determined.

      Results and Discussion

      Mean ages at puberty and conception were 429 d (range = 275–496 d) and 458 d (range = 398–534 d), respectively. Pubertal age was strongly correlated with age at first AI (r = 0.68) and conception (r = 0.48). Body weight deposition from 8 to 13 mo of age was negatively associated with age at puberty (r = −0.33), first AI (r = −0.17), and conception (r = −0.12). Pubertal age was negatively associated with BW at 10 and 13 mo (r = −0.15 to −0.19), ultrasonic measures of fatness from 10 to 15 mo of age (r = −0.15 to −0.30), IGF-1 concentrations from 8 to 13 mo (r = −0.22 to −0.31), and insulin (r = −0.22 to −0.24) and leptin (r = −0.18 to −0.21) concentrations at 10 and 13 mo. Prediction equations developed using multiple regression explained 25% of the variation in pubertal age for EM heifers [IGF-1 concentrations at 8 mo (15%), leptin (4%) and glucose (3%) concentrations at 10 mo, and BW at 13 mo (3%)] and 30% for LM heifers [IGF-1 (18%) and glucose (5%) concentrations at 8 mo and insulin concentrations (4%) and lumbar fat thickness (3%) at 13 mo].

      Implications and Applications

      In relatively well-grown replacement beef heifers, BW was a weak predictor of pubertal status. Physiological measures, particularly IGF-1 concentrations at 8 mo of age, were superior.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Amstalden M.
        • Cardoso R.C.
        • Alves B.R.
        • Williams G.L.
        Reproduction Symposium: Hypothalamic neuropeptides and the nutritional programming of puberty in heifers..
        https://doi.org/10.2527/jas.2014-7808
        24894003
        J. Anim. Sci. 2014; 92: 3211-3222
        • Atkins J.A.
        • Pohler K.G.
        • Smith M.F.
        Physiology and endocrinology of puberty in heifers..
        https://doi.org/10.1016/j.cvfa.2013.07.008
        24182430
        Vet. Clin. North Am. Food Anim. Pract. 2013; 29: 479-492
        • Buskirk D.D.
        • Faulkner D.B.
        • Ireland F.A.
        Increased postweaning gain of beef heifers enhances fertility and milk production..
        https://doi.org/10.2527/1995.734937x
        7628970
        J. Anim. Sci. 1995; 73: 937-946
        • Cardoso R.C.
        • Alves B.R.
        • Prezotto L.D.
        • Thorson J.F.
        • Tedeschi L.O.
        • Keisler D.H.
        • Park C.S.
        • Amstalden M.
        • Williams G.L.
        Use of a stair-step compensatory gain nutritional regimen to program the onset of puberty in beef heifers..
        https://doi.org/10.2527/jas.2014-7713
        24879767
        J. Anim. Sci. 2014; 92: 2942-2949
        • Cardoso R.C.
        • West S.M.
        • Maia T.S.
        • Alves B.R.C.
        • Williams G.L.
        Nutritional control of puberty in the bovine female: Prenatal and early postnatal regulation of the neuroendocrine system..
        https://doi.org/10.1016/j.domaniend.2020.106434
        32115309
        Domest. Anim. Endocrinol. 2020; 73 (106434)
        • Clarke A.M.
        • Drennan M.J.
        • McGee M.
        • Kenny D.A.
        • Evans R.D.
        • Berry D.P.
        Intake, growth and carcass traits in male progeny of sires differing in genetic merit for beef production..
        https://doi.org/10.1017/S1751731109004200
        22444765
        Animal. 2009; 3: 791-801
        • D’Occhio M.J.
        • Baruselli P.S.
        • Campanile G.
        Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review..
        https://doi.org/10.1016/j.theriogenology.2018.11.010
        30497026
        Theriogenology. 2019; 125: 277-284
        • Day M.L.
        • Anderson L.H.
        Current concepts on the control of puberty in cattle..
        https://doi.org/10.2527/1998.76suppl_31x
        J. Anim. Sci. 1998; 76: 1-15
        • Diskin M.G.
        • Kenny D.A.
        Optimising reproductive performance of beef cows and replacement heifers..
        https://doi.org/10.1017/S175173111400086X
        24703426
        Animal. 2014; 8: 27-39
        • Drennan M.J.
        • McGee M.
        Effect of suckler cow genotype and nutrition level during the winter on voluntary intake and performance and on the growth and slaughter characteristics of their progeny..
        Irish J. Agric. Food Res. 2004; 43: 185-199
        • Endecott R.L.
        • Funston R.N.
        • Mulliniks J.T.
        • Roberts A.J.
        Joint Alpharma-Beef Species Symposium: Implications of beef heifer development systems and lifetime productivity..
        https://doi.org/10.2527/jas.2012-5704
        23097405
        J. Anim. Sci. 2013; 91: 1329-1335
        • Funston R.N.
        • Martin J.L.
        • Larson D.M.
        • Roberts A.J.
        Physiology and Endocrinology Symposium: Nutritional aspects of developing replacement heifers..
        https://doi.org/10.2527/jas.2011-4569
        21965447
        J. Anim. Sci. 2012; 90: 1166-1171
        • Gasser C.L.
        • Behlke E.J.
        • Grum D.E.
        • Day M.L.
        Effect of timing of feeding a high-concentrate diet on growth and attainment of puberty in early-weaned heifers..
        https://doi.org/10.2527/jas.2005-676
        17032807
        J. Anim. Sci. 2006; 84: 3118-3122
        • Heslin J.
        • Kenny D.A.
        • Kelly A.K.
        • McGee M.
        Age at puberty and pregnancy rate in beef heifer genotypes with contrasting nutritional intake from 8 to 13 months of age..
        https://doi.org/10.1016/j.anireprosci.2019.106221
        31864491
        Anim. Reprod. Sci. 2020; 212 (106221)
        • Johnston D.
        • Barwick S.A.
        • Corbet N.
        • Fordyce G.
        • Holroyd R.
        • Williams P.
        • Burrow H.
        Genetics of heifer puberty in two tropical beef genotypes in Northern Australia and associations with heifer- and steer-production traits..
        https://doi.org/10.1071/EA08276
        Anim. Prod. Sci. 2009; 49: 399-412
        • Kelly A.K.
        • Byrne C.
        • McGee M.
        • Perry G.A.
        • Crowe M.A.
        • Sauerwein H.
        • Kenny D.A.
        Effect of calfhood nutrition on metabolic hormones, gonadotropins, and estradiol concentrations and on reproductive organ development in beef heifer calves..
        https://doi.org/10.1093/jas/skaa310
        32954407
        J. Anim. Sci. 2020; 98 (skaa310)
        • Kenny D.A.
        • Heslin J.
        • Byrne C.J.
        Early onset of puberty in cattle: Implications for gamete quality and embryo survival..
        https://doi.org/10.1071/RD17376
        29539307
        Reprod. Fertil. Dev. 2017; 30: 101-117
        • Maillard V.
        • Uzbekova S.
        • Guignot F.
        • Perreau C.
        • Ramé C.
        • Coyral-Castel S.
        • Dupont J.
        Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development..
        https://doi.org/10.1186/1477-7827-8-23
        20219117
        Reprod. Biol. Endocrinol. 2010; 8: 23
        • McCabe S.
        • McHugh N.
        • O’Connell N.E.
        • Prendiville R.
        Evaluation of production efficiencies at pasture of lactating suckler cows of diverse genetic merit and replacement strategy..
        https://doi.org/10.1017/S1751731120000415
        32223778
        Animal. 2020; 14: 1768-1776
        • Patterson D.J.
        • Perry R.C.
        • Kiracofe G.H.
        • Bellows R.A.
        • Staigmiller R.B.
        • Corah L.R.
        Management considerations in heifer development and puberty..
        https://doi.org/10.2527/1992.70124018x
        1474038
        J. Anim. Sci. 1992; 70: 4018-4035
        • Perry G.A.
        Factors affecting puberty in replacement beef heifers..
        https://doi.org/10.1016/j.theriogenology.2016.04.051
        27160450
        Theriogenology. 2016; 86: 373-378
        • Roberts A.J.
        • Funston R.N.
        • Grings E.E.
        • Petersen M.K.
        Triennial Reproduction Symposium: Beef heifer development and lifetime productivity in rangeland-based production systems..
        https://doi.org/10.2527/jas.2016-0435
        27482658
        J. Anim. Sci. 2016; 94: 2705-2715
        • Roberts A.J.
        • Gomes da Silva A.
        • Summers A.F.
        • Geary T.W.
        • Funston R.N.
        Developmental and reproductive characteristics of beef heifers classified by pubertal status at time of first breeding..
        https://doi.org/10.2527/jas2017.1873
        29293800
        J. Anim. Sci. 2017; 95: 5629-5636
        • Rodríguez-Sánchez J.A.
        • Sanz A.
        • Tamanini C.
        • Casasús I.
        Metabolic, endocrine, and reproductive responses of beef heifers submitted to different growth strategies during the lactation and rearing periods..
        https://doi.org/10.2527/jas.2015-8994
        26440167
        J. Anim. Sci. 2015; 93: 3871-3885
        • Sartori R.
        • Gimenes L.U.
        • Monteiro Jr., P.L.
        • Melo L.F.
        • Baruselli P.S.
        • Bastos M.R.
        Metabolic and endocrine differences betweenBos taurus andBos indicus females that impact the interaction of nutrition with reproduction..
        https://doi.org/10.1016/j.theriogenology.2016.04.016
        27156680
        Theriogenology. 2016; 86: 32-40
        • Sauerwein H.
        • Häußler S.
        Endogenous and exogenous factors influencing the concentrations of adiponectin in body fluids and tissues in the bovine..
        https://doi.org/10.1016/j.domaniend.2015.11.007
        27345322
        Domest. Anim. Endocrinol. 2016; 56: S33-S43
        • Simpson R.B.
        • Chase Jr., C.C.
        • Hammond A.C.
        • Williams M.J.
        • Olson T.A.
        Average daily gain, blood metabolites, and body composition at first conception in Hereford, Senepol, and reciprocal crossbred heifers on two levels of winter nutrition and two summer grazing treatments..
        https://doi.org/10.2527/1998.762396x
        9498344
        J. Anim. Sci. 1998; 76: 396-403
        • Van Amburgh M.E.
        • Soberon F.
        • Meyer M.J.
        • Molano R.A.
        Symposium review: Integration of postweaning nutrient requirements and supply with composition of growth and mammary development in modern dairy heifers..
        https://doi.org/10.3168/jds.2018-15270
        30660424
        J. Dairy Sci. 2019; 102: 3692-3705
        • Van Eenennaam A.L.
        Considerations related to breed or biological type..
        https://doi.org/10.1016/j.cvfa.2013.07.012
        24182431
        Vet. Clin. North Am. Food Anim. Pract. 2013; 29: 493-516
        • Vargas C.A.
        • Elzo M.A.
        • Chase Jr., C.C.
        • Chenoweth P.J.
        • Olson T.A.
        Estimation of genetic parameters for scrotal circumference, age at puberty in heifers, and hip height in Brahman cattle..
        https://doi.org/10.2527/1998.76102536x
        9814891
        J. Anim. Sci. 1998; 76: 2536-2541
        • Vargas C.A.
        • Olson T.A.
        • Chase Jr., C.C.
        • Hammond A.C.
        • Elzo M.A.
        Influence of frame size and body condition score on performance of Brahman cattle..
        https://doi.org/10.2527/1999.77123140x
        10641856
        J. Anim. Sci. 1999; 77: 3140-3149
        • Wen J.P.
        • Liu C.
        • Bi W.K.
        • Hu Y.T.
        • Chen Q.
        • Huang H.
        • Liang J.X.
        • Li L.T.
        • Lin L.X.
        • Chen G.
        Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons..
        https://doi.org/10.1530/JOE-12-0054
        22582096
        J. Endocrinol. 2012; 214: 177-189
        • Wen J.P.
        • Lv W.S.
        • Yang J.
        • Nie A.F.
        • Cheng X.B.
        • Yang Y.
        • Ge Y.
        • Li X.Y.
        • Ning G.
        Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential..
        https://doi.org/10.1016/j.bbrc.2008.04.146
        18466765
        Biochem. Biophys. Res. Commun. 2008; 371: 756-761

      CHORUS Manuscript

      View Open Manuscript