ABSTRACT
Objective
Materials and Methods
Results and Discussion
Implications and Applications
Key words
INTRODUCTION
MATERIALS AND METHODS
Item | 1990 Diet | 2020 Diet |
---|---|---|
Ingredient, % of DM | ||
Steam-flaked corn | 76.4 | 65.4 |
Alfalfa hay, mature | 13.0 | 9.0 |
Wet distillers grains plus solubles | — | 20.0 |
Soybean meal | 5.0 | — |
Tallow | 2.5 | 2.5 |
Supplement | 3.1 | 3.1 |
Tabular nutrient estimate, DM basis | ||
CP, % | 12.50 | 15.42 |
Fat, % | 5.17 | 6.87 |
Starch, % | 66.67 | 51.35 |
NDF, % | 14.96 | 15.93 |
Calcium, % | 0.64 | 0.82 |
Phosphorus, % | 0.25 | 0.35 |
NEm, Mcal/kg | 2.22 | 2.34 |
NEg,Mcal/kg | 1.53 | 1.63 |
Kuhl, G. 1997. Kansas State University Focus on Feedlots. Accessed Sep. 18, 2021. https://www.asi.k-state.edu/about/newsletters/focus-on-feedlots/monthly-reports.html.
- Galyean M.L.
- Malcolm K.J.
- Duff G.C.
Waggoner, J. 2020. Kansas State University Focus on Feedlots. Accessed Sep. 18, 2021. https://www.asi.k-state.edu/about/newsletters/focus-on-feedlots/monthly-reports.html.
- Russell J.R.
- Lundy E.L.
- Minton N.O.
- Sexten W.J.
- Kerley M.S.
- Hansen S.L.
- Schwandt E.F.
- Wagner J.J.
- Engle T.E.
- Bartle S.J.
- Thomson D.U.
- Reinhardt C.D.
- Müller H.C.
- Van Bibber-Krueger C.L.
- Ogunrinu O.J.
- Amachawadi R.G.
- Scott H.M.
- Drouillard J.S.
- Teixeira P.D.
- Tekippe J.A.
- Rodrigues L.M.
- Ladeira M.M.
- Pukrop J.R.
- Kim Y.H.B.
- Schoonmaker J.P.
- Warner A.L.
- Beck P.A.
- Foote A.P.
- Pierce K.N.
- Robison C.A.
- Hubbell D.S.
- Wilson B.K.
- Wellmann K.B.
- Baggerman J.O.
- Burson W.C.
- Smith Z.K.
- Kim J.
- Hergenreder J.E.
- Rounds W.
- Bernhard B.C.
- Johnson B.J.
- Gruber S.L.
- Tatum J.D.
- Engle T.E.
- Mitchell M.A.
- Laudert S.B.
- Schroeder A.L.
- Platter W.J.
- Quinn M.J.
- Reinhardt C.D.
- Loe E.R.
- Depenbusch B.E.
- Corrigan M.E.
- May M.L.
- Drouillard J.S.
- López-Carlos M.A.
- Ramírez R.G.
- Aguilera-Soto J.I.
- Aréchiga C.F.
- Méndez-Llorente F.
- Rodríguez H.
- Silva J.M.
- Bryant T.C.
- Engle T.E.
- Galyean M.L.
- Wagner J.J.
- Tatum J.D.
- Anthony R.V.
- Laudert S.B.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
- Hünerberg M.
- Little S.M.
- Beauchemin K.A.
- McGinn S.M.
- O’Connor D.
- Okine E.K.
- Harstad O.M.
- Kröbel R.
- McAllister T.A.
Powers, W., B. Auvermann, N. A. Cole, C. Gooch, R. Grant, J. Hatfield, P. Hunt, K. Johnson, A. Leytem, W. Liao, and J. M. Powell. 2014. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems. Pages 5.5–5.160 in Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Tech. Bull. No. 1939. M. Eve, D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, ed. Office Chief Econ., USDA.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
- Buttrey E.K.
- Cole N.A.
- Jenkins K.H.
- Meyer B.E.
- McCollum III, F.T.
- Preece S.L.M.
- Auvermann B.W.
- Heflin K.R.
- MacDonald J.C.
- Hünerberg M.
- Little S.M.
- Beauchemin K.A.
- McGinn S.M.
- O’Connor D.
- Okine E.K.
- Harstad O.M.
- Kröbel R.
- McAllister T.A.
- da Silva J.C.B.
- Cole N.A.
- Ponce C.H.
- Smith D.R.
- Greene L.W.
- Schuster G.
- Brown M.S.
- Ponce C.H.
- Cole N.A.
- Sawyer J.
- da Silva J.C.B.
- Smith D.R.
- Maxwell C.
- Brown M.S.
RESULTS AND DISCUSSION
Dietary Changes from 1990 to 2020
- Buttrey E.K.
- Jenkins K.H.
- Lewis J.B.
- Smith S.B.
- Miller R.K.
- Lawrence T.E.
- McCollum III, F.T.
- Pinedo P.J.
- Cole N.A.
- MacDonald J.C.
- Ponce C.H.
- Cole N.A.
- Sawyer J.
- da Silva J.C.B.
- Smith D.R.
- Maxwell C.
- Brown M.S.
Technology Effects on Cattle Growth and Emissions
Item | No technology | Imp | Mon | Imp and Mon |
---|---|---|---|---|
Initial BW, kg | 335 | 335 | 335 | 335 |
Final BW, kg | 500 | 535 | 500 | 535 |
Days on feed, d | 137 | 137 | 134 | 135 |
ADG, kg | 1.21 | 1.46 | 1.23 | 1.48 |
DMI, kg | 8.55 | 9.08 | 8.21 | 8.73 |
G:F | 0.142 | 0.161 | 0.150 | 0.170 |
DP, % | 63.16 | 63.00 | 63.16 | 63.00 |
HCW, kg | 316 | 337 | 316 | 337 |
Enteric CH4 | ||||
g/d | 80.96 | 85.98 | 74.75 | 79.49 |
L/kg of DMI | 13.22 | 13.22 | 12.72 | 12.72 |
Total N balance during entire feeding period | ||||
N intake, kg | 23.43 | 24.88 | 22.00 | 23.57 |
N excreted, kg | 20.56 | 21.53 | 19.13 | 20.25 |
Ammonia-N, kg | 15.23 | 16.17 | 14.30 | 15.32 |
Total manure excretion during entire feeding period | ||||
Manure, kg of DM/animal | 273 | 290 | 256 | 275 |
Manure, kg as is/animal | 420 | 446 | 394 | 422 |
Item | No technology | Imp | Mon | Imp and Mon | RH | Imp, Mon, and RH |
---|---|---|---|---|---|---|
Initial BW, kg | 360 | 360 | 360 | 360 | 360 | 360 |
Final BW, kg | 602 | 647 | 602 | 647 | 610 | 655 |
Days on feed, d | 182 | 183 | 181 | 179 | 185 | 179 |
ADG, kg | 1.33 | 1.56 | 1.34 | 1.60 | 1.35 | 1.65 |
DMI, kg | 8.89 | 9.28 | 8.65 | 8.98 | 8.94 | 8.98 |
G:F | 0.150 | 0.172 | 0.154 | 0.179 | 0.154 | 0.184 |
DP, % | 63.34 | 63.66 | 63.34 | 63.66 | 63.68 | 64.00 |
HCW, kg | 381 | 412 | 381 | 412 | 388 | 419 |
Enteric CH4 | ||||||
g/d | 87.36 | 91.20 | 81.74 | 84.85 | 87.85 | 84.85 |
L/kg of DMI | 13.72 | 13.72 | 13.20 | 13.20 | 13.72 | 13.20 |
Total N balance during entire feeding period | ||||||
N intake, kg | 39.92 | 41.90 | 38.63 | 39.66 | 40.81 | 39.66 |
N excreted, kg | 36.14 | 37.97 | 35.00 | 35.65 | 37.11 | 35.59 |
Ammonia-N, kg | 25.95 | 27.23 | 25.11 | 25.78 | 26.52 | 25.78 |
Total manure excretion during entire feeding period | ||||||
Manure, kg of DM/animal | 377 | 396 | 365 | 375 | 385 | 375 |
Manure, kg as is/animal | 580 | 609 | 561 | 576 | 593 | 576 |
- Erickson G.E.
- Milton C.T.
- Fanning K.C.
- Cooper R.J.
- Swingle R.S.
- Parrott J.C.
- Vogel G.
- Klopfenstein T.J.
Effects of the Overall Production System on Cattle Growth and Emissions (1990 vs. 2020)
Powers, W., B. Auvermann, N. A. Cole, C. Gooch, R. Grant, J. Hatfield, P. Hunt, K. Johnson, A. Leytem, W. Liao, and J. M. Powell. 2014. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems. Pages 5.5–5.160 in Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Tech. Bull. No. 1939. M. Eve, D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, ed. Office Chief Econ., USDA.
Technology Effects on Total Carbon Footprint
Item | No technology | Imp | Mon | Imp and Mon |
---|---|---|---|---|
Animal and manure | ||||
Enteric CH4 | 277.30 | 294.49 | 250.43 | 268.27 |
Manure N2O | 122.51 | 128.35 | 114.03 | 120.68 |
Manure CH4 | 18.50 | 19.65 | 17.38 | 18.61 |
Indirect N2O | 22.69 | 24.10 | 21.31 | 22.83 |
Crop production | ||||
Corn | 349.02 | 370.65 | 327.80 | 351.16 |
Alfalfa hay | 30.46 | 32.34 | 28.60 | 30.64 |
Soybean meal | 26.94 | 28.61 | 25.30 | 27.11 |
Other | 30.17 | 32.04 | 28.34 | 30.36 |
Transport | ||||
Feed | 42.17 | 44.79 | 39.61 | 42.43 |
Manure | 1.23 | 1.31 | 1.16 | 1.24 |
Grain processing energy | ||||
Natural gas | 26.85 | 28.51 | 25.22 | 27.01 |
Electricity | 14.77 | 15.68 | 13.87 | 14.86 |
Total production | ||||
Total CO2e | 962.61 | 1,020.52 | 893.04 | 955.21 |
kg of CO2e/kg of HCW | 3.05 | 3.03 | 2.83 | 2.83 |
kg of CO2e/kg of BW gain | 5.83 | 5.10 | 5.41 | 4.78 |
Total reactive N | ||||
kg/animal | 15.54 | 16.50 | 14.59 | 15.63 |
g/kg of HCW | 49.20 | 48.94 | 46.20 | 46.37 |
g/kg of BW gain | 94.17 | 82.48 | 88.43 | 78.14 |
Item | No technology | Imp | Mon | Imp and Mon | RH | Imp, Mon, and RH |
---|---|---|---|---|---|---|
Animal and manure | ||||||
Enteric CH4 | 397.50 | 417.22 | 369.85 | 379.72 | 406.33 | 379.72 |
Manure N2O | 215.39 | 226.33 | 208.58 | 212.50 | 221.20 | 212.09 |
Manure CH4 | 25.55 | 26.82 | 24.73 | 25.39 | 26.12 | 25.39 |
Indirect N2O | 38.66 | 40.58 | 37.41 | 38.41 | 39.52 | 38.41 |
Crop production | ||||||
Corn | 412.68 | 433.15 | 399.33 | 409.99 | 421.84 | 409.99 |
Alfalfa hay | 29.12 | 30.57 | 28.18 | 28.93 | 29.77 | 28.93 |
Wet distillers grains plus solubles | 106.79 | 112.08 | 103.33 | 106.09 | 109.16 | 106.09 |
Other | 41.68 | 43.75 | 40.33 | 41.41 | 42.60 | 41.41 |
Transport | ||||||
Feed | 58.70 | 61.61 | 56.80 | 58.31 | 60.00 | 58.31 |
Manure | 1.70 | 1.79 | 1.65 | 1.69 | 1.74 | 1.69 |
Grain processing energy | ||||||
Natural gas | 31.74 | 33.32 | 30.72 | 31.54 | 32.45 | 31.54 |
Electricity | 17.46 | 18.33 | 16.89 | 17.35 | 17.85 | 17.35 |
Total production | ||||||
Total CO2e | 1,376.99 | 1,445.55 | 1,317.81 | 1,351.33 | 1,408.58 | 1,350.92 |
kg of CO2e/kg of HCW | 3.61 | 3.51 | 3.46 | 3.28 | 3.63 | 3.22 |
kg of CO2e/kg of BW gain | 5.68 | 5.04 | 5.45 | 4.72 | 5.65 | 4.58 |
Total reactive N | ||||||
kg/animal | 26.49 | 27.80 | 25.63 | 26.31 | 27.08 | 26.31 |
g/kg of HCW | 69.44 | 67.55 | 67.26 | 63.93 | 69.77 | 62.77 |
g/kg of BW gain | 109.32 | 97.01 | 106.05 | 91.81 | 108.54 | 89.19 |
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
Effects of the Overall Production System on Total Carbon Footprint (1990 vs. 2020)
Item | No technology | Imp | Mon | Imp and Mon |
---|---|---|---|---|
Animal and manure | ||||
Enteric CH4 | 28.81 | 28.86 | 28.04 | 28.09 |
Manure N2O | 12.73 | 12.58 | 12.77 | 12.63 |
Manure CH4 | 1.92 | 1.93 | 1.95 | 1.95 |
Indirect N2O | 2.36 | 2.36 | 2.39 | 2.39 |
Feed production | ||||
Corn | 36.26 | 36.32 | 36.71 | 36.76 |
Alfalfa hay | 3.16 | 3.17 | 3.20 | 3.21 |
Soybean meal | 2.80 | 2.80 | 2.83 | 2.84 |
Other | 3.13 | 3.14 | 3.17 | 3.18 |
Transport | ||||
Feed | 4.38 | 4.39 | 4.44 | 4.44 |
Manure | 0.128 | 0.128 | 0.130 | 0.130 |
Grain processing energy | ||||
Natural gas | 2.79 | 2.79 | 2.82 | 2.83 |
Electricity | 1.53 | 1.54 | 1.55 | 1.56 |
Summary | ||||
Enteric | 28.81 | 28.86 | 28.04 | 28.09 |
Manure | 17.01 | 16.86 | 17.10 | 16.97 |
Feed production | 45.35 | 45.43 | 45.92 | 45.99 |
Transport | 4.51 | 4.52 | 4.56 | 4.57 |
Grain processing | 4.32 | 4.33 | 4.38 | 4.38 |
Item | No technology | Imp | Mon | Imp and Mon | RH | Imp, Mon, and RH |
---|---|---|---|---|---|---|
Animal and manure | ||||||
Enteric CH4 | 28.87 | 28.86 | 28.07 | 28.10 | 28.85 | 28.11 |
Manure N2O | 15.64 | 15.66 | 15.83 | 15.73 | 15.70 | 15.70 |
Manure CH4 | 1.86 | 1.86 | 1.88 | 1.88 | 1.85 | 1.88 |
Indirect N2O | 2.81 | 2.81 | 2.84 | 2.84 | 2.81 | 2.84 |
Feed production | ||||||
Corn | 29.97 | 29.96 | 30.30 | 30.34 | 29.95 | 30.35 |
Alfalfa hay | 2.12 | 2.11 | 2.14 | 2.14 | 2.11 | 2.14 |
Wet distillers grains plus solubles | 7.76 | 7.75 | 7.84 | 7.85 | 7.75 | 7.85 |
Other | 3.03 | 3.03 | 3.06 | 3.06 | 3.02 | 3.07 |
Transport | ||||||
Feed | 4.26 | 4.26 | 4.31 | 4.32 | 4.26 | 4.32 |
Manure | 0.124 | 0.124 | 0.125 | 0.125 | 0.124 | 0.125 |
Grain processing energy | ||||||
Natural gas | 2.31 | 2.30 | 2.33 | 2.33 | 2.30 | 2.33 |
Electricity | 1.27 | 1.27 | 1.28 | 1.28 | 1.27 | 1.28 |
Summary | ||||||
Enteric | 28.87 | 28.86 | 28.07 | 28.10 | 28.85 | 28.11 |
Manure | 20.31 | 20.32 | 20.54 | 20.45 | 20.36 | 20.42 |
Feed production | 42.87 | 42.86 | 43.34 | 43.40 | 42.84 | 43.41 |
Transport | 4.39 | 4.39 | 4.44 | 4.44 | 4.38 | 4.44 |
Grain processing | 3.57 | 3.57 | 3.61 | 3.62 | 3.57 | 3.62 |
- Eastwood L.C.
- Boykin C.A.
- Harris M.K.
- Arnold A.N.
- Hale D.S.
- Kerth C.R.
- Griffin D.B.
- Savell J.W.
- Belk K.E.
- Woerner D.R.
- Hasty J.D.
- Delmore Jr., J.R.J.
- Martin J.N.
- Lawrence T.E.
- McEvers T.J.
- VanOverbeke D.L.
- Mafi G.G.
- Pfeiffer M.M.
- Schmidt T.B.
- Maddock R.J.
- Johnson D.D.
- Carr C.C.
- Scheffler J.M.
- Pringle T.D.
- Stelzleni A.M.
- Eastwood L.C.
- Boykin C.A.
- Harris M.K.
- Arnold A.N.
- Hale D.S.
- Kerth C.R.
- Griffin D.B.
- Savell J.W.
- Belk K.E.
- Woerner D.R.
- Hasty J.D.
- Delmore Jr., J.R.J.
- Martin J.N.
- Lawrence T.E.
- McEvers T.J.
- VanOverbeke D.L.
- Mafi G.G.
- Pfeiffer M.M.
- Schmidt T.B.
- Maddock R.J.
- Johnson D.D.
- Carr C.C.
- Scheffler J.M.
- Pringle T.D.
- Stelzleni A.M.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
- Effects of ractopamine hydrochloride on performance, rate and variation in feed intake, and acid-base balance in feedlot cattle..https://doi.org/10.2527/jas.2007-026317609477J. Anim. Sci. 2007; 85: 3090-3098
- Regional carbon footprint analysis of dairy feeds for milk production in the USA..https://doi.org/10.1007/s11367-012-0386-yInt. J. Life Cycle Assess. 2012; 17: 520-534
- Efficacy of laidlomycin propionate to reduce ruminal acidosis in cattle..https://doi.org/10.2527/1995.73113445x8586605J. Anim. Sci. 1995; 73: 3445-3454
- Additive effects of growth promoting technologies on performance of grazing steers and economics of the wheat pasture enterprise..https://doi.org/10.2527/jas.2013-720324492552J. Anim. Sci. 2014; 92: 1219-1227
- Pharmaceuticals, direct-fed microbials, and enzymes for enhancing growth and feed efficiency of beef cattle..https://doi.org/10.1016/S0749-0720(03)00059-814608803Vet. Clin. North Am. Food Anim. Pract. 2003; 19: 599-624
- Biotechnological processes for conversion of corn into ethanol..https://doi.org/10.1007/s00253-004-1819-815599517Appl. Microbiol. Biotechnol. 2005; 67: 19-25
Bouffault, J., and J. Willemart. 1983. Anabolic activity of trenbolone acetate alone or in association with estrogens. Pages 155–179 in Anabolics in Animal Production. E. Meissonnier, ed. Office Int. Epizooties.
- Effects of ractopamine and trenbolone acetate implants with or without estradiol on growth performance, carcass characteristics, adipogenic enzyme activity, and blood metabolites in feedlot steers and heifers..https://doi.org/10.2527/jas.2010-290120729282J. Anim. Sci. 2010; 88: 4102-4119
- Effect of zinc source and concentration and chromium supplementation on performance and carcass characteristics in feedlot steers..https://doi.org/10.1093/jas/skz01630649352J. Anim. Sci. 2019; 97: 1286-1295
- Effects of twenty percent corn wet distillers grains plus solubles in steam-flaked and dry-rolled corn-based finishing diets on heifer performance, carcass characteristics, and manure characteristics..https://doi.org/10.2527/jas.2012-519822851239J. Anim. Sci. 2012; 90: 5086-5098
- Effects of 35% corn wet distillers grains plus solubles in steam-flaked and dry-rolled corn-based finishing diets on animal performance, carcass characteristics, beef fatty acid composition, and sensory attributes.https://doi.org/10.2527/jas.2013-502923589628J. Anim. Sci. 2013; 91: 1850-1865
- Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria..https://doi.org/10.1128/aem.38.1.72-77.197916345418Appl. Environ. Microbiol. 1979; 38: 72-77
- A review of bloat in feedlot cattle..https://doi.org/10.2527/1998.761299x9464911J. Anim. Sci. 1998; 76: 299-308
- Effects of diet quality on energy metabolism and methane production by beef steers fed a warm-season grass-based hay diet..https://doi.org/10.15232/aas.2020-02025Appl. Anim. Sci. 2020; 36 (a): 652-667
- Effects of steam flaking on the carbon-footprint of finishing beef cattle..https://doi.org/10.1093/tas/txaa11033381726Transl. Anim. Sci. 2020; 4 (b): S84-S89
- Effects of supplemental fat concentration on feeding logistics, animal performance, and nutrient losses of heifers fed finishing diets based on steam-flaked corn and sorghum-based distiller’s grains..https://doi.org/10.1093/jas/skz13030982899J. Anim. Sci. 2019; 97: 2583-2597
- The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle..https://doi.org/10.3168/jds.2017-1382229908813J. Dairy Sci. 2018; 101: 7892-7906
- Implant strategies in an integrated beef production system..https://doi.org/10.2527/jas2001.79E-SupplE110xJ. Anim. Sci. 2001; 79: E110-E117
- Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake..https://doi.org/10.2527/jas.2011-501822859759J. Anim. Sci. 2012; 90: 4583-4592
- National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products..https://doi.org/10.2527/tas2017.002932704647Transl. Anim. Sci. 2017; 1: 229-238
- Interaction between bunk management and monensin concentration on finishing performance, feeding behavior, and ruminal metabolism during an acidosis challenge with feedlot cattle..https://doi.org/10.2527/2003.81112869x14601891J. Anim. Sci. 2003; 81: 2869-2879
FOIA (Freedom of Information Act). 1987. Finaplix. US Food Drug Admin.
- A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy..https://doi.org/10.2527/1992.70113578x1334063J. Anim. Sci. 1992; 70: 3578-3596
- Protein levels in beef cattle finishing diets: Industry application, university research, and systems results..https://doi.org/10.2527/1996.74112860x8923202J. Anim. Sci. 1996; 74: 2860-2870
- Performance of feedlot steers fed diets containing laidlomycin propionate or monensin plus tylosin, and effects of laidlomycin propionate concentration on intake patterns and ruminal fermentation in beef steers during adaptation to a high-concentrate diet..https://doi.org/10.2527/1992.70102950x1429270J. Anim. Sci. 1992; 70: 2950-2958
- Effects of increasing supplemental dietary Zn concentration on growth performance and carcass characteristics in finishing steers fed ractopamine hydrochloride..https://doi.org/10.1093/jas/sky09429733414J. Anim. Sci. 2018; 96: 1903-1913
- Influence of monensin on the performance of cattle..https://doi.org/10.2527/jas1984.5861484x6378865J. Anim. Sci. 1984; 58: 1484-1498
- Effects of ractopamine supplementation on growth performance and carcass characteristics of feedlot steers differing in biological type..https://doi.org/10.2527/jas.2006-63417431043J. Anim. Sci. 2007; 85: 1809-1815
- Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle..https://doi.org/10.2527/jas.2013-699424352959J. Anim. Sci. 2014; 92: 264-271
- Wet corn distillers byproducts compared with dried corn distillers grains with solubles as a source of protein and energy for ruminants..https://doi.org/10.2527/1994.72123246x7759376J. Anim. Sci. 1994; 72: 3246-3257
- Effects of feeding monensin to bred heifers fed in a drylot on nutrient and energy balance..https://doi.org/10.1093/jas/skx03029617807J. Anim. Sci. 2018; 96: 1171-1180
- Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production..https://doi.org/10.1016/j.agsy.2014.01.005Agric. Syst. 2014; 127: 19-27
- Effects of feed intake and dietary level of wet corn gluten feed on feedlot performance, digestibility of nutrients, and carcass characteristics of growing-finishing beef heifers..https://doi.org/10.2527/1995.73113246x8586580J. Anim. Sci. 1995; 73: 3246-3252
IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, Forestry and Other Land Use. Accessed Jul. 15, 2021. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html.
IPCC. 2014. Technical summary. Pages 33–107 in AR5 Climate Change 2014: Mitigation of Climate Change. Intergov. Panel Climate Chang.
IPCC. 2019. Chapter 10. Emissions from livestock and manure management. Pages 10.1–10.87 in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergov. Panel Climate Chang.
- Allocation procedure in ethanol production system from corn grain i. System expansion..https://doi.org/10.1007/BF02978879Int. J. Life Cycle Assess. 2002; 7: 237
- Board-Invited Review: Use of distillers by-products in the beef cattle feeding industry..https://doi.org/10.2527/jas.2007-055018156361J. Anim. Sci. 2008; 86: 1223-1231
- Feeding wet corn gluten feed to reduce subacute acidosis in cattle..https://doi.org/10.2527/1995.73102931x8617663J. Anim. Sci. 1995; 73 (a): 2931-2939
- Effect of level and type of fat on subacute acidosis in cattle fed dry-rolled corn finishing diets..https://doi.org/10.2527/1995.7382438x8567481J. Anim. Sci. 1995; 73 (b): 2438-2446
Kuhl, G. 1997. Kansas State University Focus on Feedlots. Accessed Sep. 18, 2021. https://www.asi.k-state.edu/about/newsletters/focus-on-feedlots/monthly-reports.html.
- Effect of corn hybrid and grain processing method on rate of starch disappearance and performance of finishing cattle..https://doi.org/10.2527/1995.732360x7601765J. Anim. Sci. 1995; 73: 360-364
- A comparison of the USDA ossification-based maturity system to a system based on dentition..https://doi.org/10.2527/2001.7971683x11465354J. Anim. Sci. 2001; 79: 1683-1690
- Effects of rate of gain during winter on subsequent grazing and finishing performance..https://doi.org/10.2527/1990.6882525x2401668J. Anim. Sci. 1990; 68: 2525-2529
- Effect of ractopamine hydrochloride and zilpaterol hydrochloride on growth, diet digestibility, intake and carcass characteristics of feedlot lambs..https://doi.org/10.1016/j.livsci.2010.02.018Livest. Sci. 2010; 131: 23-30
- The value of soybean hulls as a replacement for corn in beef cattle diets formulated with or without added fat..https://doi.org/10.2527/1995.7392706x8582861J. Anim. Sci. 1995; 73: 2706-2711
- Role of β-adrenoceptor signaling in skeletal muscle: Implications for muscle wasting and disease..https://doi.org/10.1152/physrev.00028.200718391178Physiol. Rev. 2008; 88: 729-767
MacDonald, J., N. A. Cole, J. Osterstock, and K. E. Hales. 2009. Technology in the Industry—Where Would We, and the World, Be Without It? Planis Nutr. Counc.
- Effects of beef production system on animal performance and carcass characteristics..https://doi.org/10.2527/jas.2014-763925403195J. Anim. Sci. 2014; 92: 5727-5738
- Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid..https://doi.org/10.2527/2004.82113346x15542482J. Anim. Sci. 2004; 82: 3346-3356
- Ionophores for dairy cattle: Current status and future outlook..https://doi.org/10.3168/jds.S0022-0302(01)70218-4J. Dairy Sci. 2001; 84: E194-E203
- Effects of intermittent feeding of tylosin phosphate during the finishing period on feedlot performance, carcass characteristics, antimicrobial resistance, and incidence and severity of liver abscesses in steers..https://doi.org/10.1093/jas/sky16629718254J. Anim. Sci. 2018; 96: 2877-2885
NASEM (National Academies of Sciences, Engineering, and Medicine). 2000. Nutrient Requirements of Beef Cattle. Update 2000. Natl. Acad. Press.
NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Nutrient Requirements of Beef Cattle. 8th ed. Natl. Acad. Press.
- Enteric nitrous oxide emissions from beef cattle..https://doi.org/10.15232/pas.2018-01769Prof. Anim. Sci. 2018; 34: 594-607
- Effects of wet corn distiller’s grains with solubles and nonprotein nitrogen on feeding efficiency, growth performance, carcass characteristics, and nutrient losses of yearling steers..https://doi.org/10.1093/jas/skz13330985872J. Anim. Sci. 2019; 97: 2609-2630
Powers, W., B. Auvermann, N. A. Cole, C. Gooch, R. Grant, J. Hatfield, P. Hunt, K. Johnson, A. Leytem, W. Liao, and J. M. Powell. 2014. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems. Pages 5.5–5.160 in Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Tech. Bull. No. 1939. M. Eve, D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, ed. Office Chief Econ., USDA.
- The effects of ractopamine-hydrogen chloride (Optaflexx) on performance, carcass characteristics, and meat quality of finishing feedlot heifers..https://doi.org/10.2527/jas.2007-011718192549J. Anim. Sci. 2008; 86: 902-908
- Comparison of the effects of Actogain or Optaflexx on finishing feedlot steer performance and carcass characteristics..https://doi.org/10.15232/pas.2015-01482Prof. Anim. Sci. 2016; 32: 455-460
- Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis..https://doi.org/10.3168/jds.2012-592323769353J. Dairy Sci. 2013; 96: 5161-5173
- History of diethylstilbestrol use in cattle..J. Anim. Sci. 2002; 80: 1-7
- High-dose anabolic implants are not all the same for growth and carcass traits of feedlot steers: A meta-analysis..https://doi.org/10.2527/jas.2014-757225149344J. Anim. Sci. 2014; 92: 4711-4718
- Effect of ionophores on ruminal fermentation..https://doi.org/10.1128/aem.55.1.1-6.19892650616Appl. Environ. Microbiol. 1989; 55: 1-6
- Influence of growing phase feed efficiency classification on finishing phase growth performance and carcass characteristics of beef steers fed different diet types..https://doi.org/10.2527/msasas2016-12527482679J. Anim. Sci. 2016; 94: 58-59
- Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey..https://doi.org/10.2527/jas.2016-028227285940J. Anim. Sci. 2016; 94: 2648-2663
- Managing for soil carbon sequestration: Let’s get realistic..https://doi.org/10.1111/gcb.1447830485613Glob. Chang. Biol. 2018; 25: 386-389
Schroeder, A. L., D. M. Polser, S. B. Laudert, G. J. Vogel, T. Ripberger, and M. T. Van Koevering. 2004. The effect of Optaflexx on growth performance and carcass traits of steers and heifers. Pages 65–72 in Proc. Southwest Nutr. Manage. Conf., Univ. Arizona, Tucson.
- The effects of dry-rolled corn particle size on performance, carcass traits, and starch digestibility in feedlot finishing diets containing wet distiller’s grains..https://doi.org/10.2527/jas.2015-940827065280J. Anim. Sci. 2016; 94: 1194-1202
- Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change..https://doi.org/10.1126/science.115186118258860Science. 2008; 319: 1238-1240
- Elevation of a specific mRNA in longissimus muscle of steers fed ractopamine..https://doi.org/10.2527/jas1989.67123495x2613589J. Anim. Sci. 1989; 67: 3495-3502
- Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems..https://doi.org/10.2527/jas.2011-465422952364J. Anim. Sci. 2012; 90: 4656-4665
- Growth promoting technologies reduce greenhouse gas, alcohol, and ammonia emissions from feedlot cattle..https://doi.org/10.2527/jas.2011-488524085413J. Anim. Sci. 2013; 91: 5438-5447
- Carbon footprint and ammonia emissions of California beef production systems..https://doi.org/10.2527/jas.2011-465322952361J. Anim. Sci. 2012; 90: 4641-4655
Steinfeld, H., P. Gerber, T. Wassenaaar, V. Castel, M. Rosales, and C. DeHaan. 2006. Livestock’s Long Shadow: Environmental Issues and Options. Food Agric. Org. United Nations. Accessed Jul. 14, 2021. ftp://ftp.fao.org/docrep/fao/010/a0701e/a0701e00.pdf.
- Effect of monensin and monensin and tylosin combination on feed intake variation of feedlot steers..https://doi.org/10.2527/1995.73139x7601752J. Anim. Sci. 1995; 73: 39-44
- Effects of increased inclusion of algae meal on finishing steer performance and carcass characteristics..https://doi.org/10.2527/jas.2015-983227065139J. Anim. Sci. 2016; 94: 687-696
- Potential environmental benefits of feed additives and other strategies for ruminant production..Rev. Bras. Zootec. 2011; 40: 291-309
- Potential environmental benefits of ionophores in ruminant diets..https://doi.org/10.2134/jeq2003.159114535299J. Environ. Qual. 2003; 32: 1591-1602
- Effect of ruminally protected arginine and lysine supplementation on serum amino acids, performance, and carcass traits of feedlot steers..https://doi.org/10.1093/jas/skz19131175366J. Anim. Sci. 2019; 97: 3511-3522
- Ionophore strategy affects growth performance and carcass characteristics in feedlot steers..https://doi.org/10.2527/jas.2016-084128046158J. Anim. Sci. 2016; 94: 5341-5349
- Ammonia emissions from a beef cattle feedyard on the southern High Plains..https://doi.org/10.1016/j.atmosenv.2008.05.013Atmos. Environ. 2008; 42: 6797-6805
USDA-ERS. 2020. Meat Statistics: Meat Production, Slaughter, Dressed Weights, and Cold Storage with History. USDA Econ. Res. Serv.
USDA-NAHMS. 2013. Trends in Health and Management Practices on US Feedlots, 1994–2011. USDA Natl. Anim. Health Monit. Syst.
- Effect of monensin on rumen metabolism in vitro..10.1128/aem.34.3.251-257.1977Appl. Environ. Microbiol. 1977; 34: 251
Waggoner, J. 2020. Kansas State University Focus on Feedlots. Accessed Sep. 18, 2021. https://www.asi.k-state.edu/about/newsletters/focus-on-feedlots/monthly-reports.html.
- Effects of utilizing cotton byproducts in a finishing diet on beef cattle performance, carcass traits, fecal characteristics, and plasma metabolites..https://doi.org/10.1093/jas/skaa03832016404J. Anim. Sci. 2020; 98 (skaa038)
- Effects of zinc propionate supplementation on growth performance, skeletal muscle fiber, and receptor characteristics in beef steers..https://doi.org/10.1093/jas/skaa21032619223J. Anim. Sci. 2020; 98 (skaa210)
- Analysis of modern technologies commonly used in beef cattle production: Conventional beef production versus nonconventional production using meta-analysis..https://doi.org/10.2527/jas.2009-177819617517J. Anim. Sci. 2009; 87: 3418-3426
- Density of steam-flaked sorghum grain, roughage level, and feeding regimen for feedlot steers..https://doi.org/10.2527/1991.6941707x1649157J. Anim. Sci. 1991; 69: 1707-1718
- Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle..https://doi.org/10.2527/1990.683767x2318738J. Anim. Sci. 1990; 68: 767-775
- Comparative feeding value of steam-flaked corn and sorghum in finishing diets supplemented with or without sodium bicarbonate..https://doi.org/10.2527/1991.693905x1648071J. Anim. Sci. 1991; 69: 905-916
Article info
Publication history
Footnotes
The authors have not declared any conflicts of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy