Advertisement

Differences in the microbial community abundances of dairy cattle divergent for milk urea nitrogen and their potential implications

      ABSTRACT

      Objective

      The first objective of this experiment was to determine and describe any differences in rumen microbiota relative abundances between dairy cattle divergent for MUN breeding values (MUNBV). The second objective was to ascertain whether any differences in rumen microbiota relative abundances may be associated with phenotypical differences already observed in dairy cattle divergent for MUNBV.

      Materials and Methods

      Rumen microbiota data were collected and collated from multiple trials that had been conducted investigating differences in dairy cattle divergent for MUNBV where rumen samples were taken via esophageal intubation.

      Results and Discussion

      On average 8% of the rumen microbiota genera detected differed in their relative abundance based on MUNBV. High-MUNBV dairy cattle had a 10% increase in the relative abundance ofBasfia and a 20% increase in the relative abundance ofSuccinivibrio compared with low-MUNBV dairy cattle. BothBasfia andSuccinivibrio have potential implications for rumen fermentation that require further investigation. High-MUNBV dairy cattle also had a 17% increase in the relative abundance ofKandleria compared with low-MUNBV dairy cattle. Greater relative abundances ofKandleria may be affecting the health status of dairy cattle classified as high MUNBV resulting in greater incidences of increase SCC.

      Implications and Applications

      Knowledge of differences in the relative abundance of the rumen microbiota of dairy cows divergent for MUNBV highlights areas where future research is required as well as the potential for using MUNBV as a metric for increasing animal welfare.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Beatson P.R.
        • Meier S.
        • Cullen N.G.
        • Eding H.
        Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion..
        10.1017/S1751731119000235
        Animal. 2019; 13: 2164-2171
        • Belanche A.
        • Doreau M.
        • Edwards J.E.
        • Moorby J.M.
        • Pinloche E.
        • Newbold C.J.
        Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation..
        https://doi.org/10.3945/jn.112.159574
        22833657
        J. Nutr. 2012; 142: 1684-1692
        • Blackburn T.H.
        • Hungate R.E.
        Succinic acid turnover and propionate production in the bovine rumen..
        https://doi.org/10.1128/am.11.2.132-135.1963
        13971386
        Appl. Microbiol. 1963; 11: 132-135
        • Camacho C.
        • Coulouris G.
        • Avagyan V.
        • Ma N.
        • Papadopoulos J.
        • Bealer K.
        • Madden T.L.
        BLAST+: Architecture and applications..
        10.1186/1471-2105-10-421
        BMC Bioinformat. 2009; 10: 1-9
        • Chen J.
        • Harstad O.M.
        • McAllister T.
        • Dörsch P.
        • Holo H.
        Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro..
        https://doi.org/10.1080/09064702.2020.1737215
        Acta Agric. Scand. A Anim. Sci. 2020; 69: 169-175
        • de Assis Lage C.F.
        • Räisänen S.E.
        • Melgar A.
        • Nedelkov K.
        • Chen X.
        • Oh J.
        • Fetter M.E.
        • Indugu N.
        • Bender J.S.
        • Vecchiarelli B.
        • Hennessy M.L.
        • Pitta D.
        • Hristov A.N.
        Comparison of two sampling techniques for evaluating ruminal fermentation and microbiota in the planktonic phase of rumen digesta in dairy cows..
        https://doi.org/10.3389/fmicb.2020.618032
        33424820
        Front. Microbiol. 2020; 11 (618032)
        • Doyle N.
        • Mbandlwa P.
        • Kelly W.J.
        • Attwood G.
        • Li Y.
        • Ross R.P.
        • Stanton C.
        • Leahy S.
        Use of lactic acid bacteria to reduce methane production in ruminants, A critical review..
        https://doi.org/10.3389/fmicb.2019.02207
        31632365
        Front. Microbiol. 2019; 10: 2207
        • Elolimy A.A.
        • Arroyo J.M.
        • Batistel F.
        • Iakiviak M.A.
        • Loor J.J.
        Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows..
        https://doi.org/10.1186/s40104-018-0258-9
        29796256
        J. Anim. Sci. Biotechnol. 2018; 9: 43
        • Guo Y.
        • Han L.
        • Sheng Q.
        Recent advances in high throughput sequencing analysis..
        https://doi.org/10.1155/2017/2454780
        28706940
        Int. J. Genomics. 2017; 2017 (2454780)
      1. Henderson, G., F. Cox, S. Ganesh, A. Jonker, W. Young, Global Rumen Census Collaborators, and P. H. Janssen. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567. https://doi.org/10.1038/srep14567.

        • Herten K.
        • Hestand M.S.
        • Vermeesch J.R.
        • Van Houdt J.K.J.
        GBSX: A toolkit for experimental design and demultiplexing genotyping by sequencing experiments..
        10.1186/s12859-015-0514-3
        BMC Bioinformatics. 2015; 16: 1-6
        • Hess M.K.
        • Rowe S.J.
        • Van Stijn T.C.
        • Henry H.M.
        • Hickey S.M.
        • Brauning R.
        • McCulloch A.F.
        • Hess A.S.
        • Kirk M.R.
        • Kumar S.
        • Pinares-Patiño C.
        • Kittelmann S.
        • Wood G.R.
        • Janssen P.H.
        • McEwan J.C.
        A restriction enzyme reduced representation sequencing approach for low-cost, high-throughput metagenome profiling..
        https://doi.org/10.1371/journal.pone.0219882
        32243481
        PLoS One. 2020; 15 (e0219882)
        • Huang S.
        • Ji S.
        • Suen G.
        • Wang F.
        • Li S.
        The rumen bacterial community in dairy cows is correlated to production traits during freshening period..
        https://doi.org/10.3389/fmicb.2021.630605
        33746924
        Front. Microbiol. 2021; 12 (630605)
        • Huson D.H.
        • Auch A.F.
        • Qi J.
        • Schuster S.C.
        MEGAN analysis of metagenomic data..
        10.1101/gr.5969107
        Genome Res. 2007; 17: 377-386
        • Kittelmann S.
        • Pinares-Patiño C.S.
        • Seedorf H.
        • Kirk M.R.
        • Ganesh S.
        • McEwan J.C.
        • Janssen P.H.
        Two different bacterial community types are linked with the low-methane emission trait in sheep..
        10.1371/journal.pone.0103171
        PLoS One. 2014; 9: 1-9
        • Kuhnert P.
        • Scholten E.
        • Haefner S.
        • Mayor D.
        • Frey J.
        Basfia succiniciproducens gen. nov., sp. nov., a new member of the familyPasteurellaceae isolated from bovine rumen..
        https://doi.org/10.1099/ijs.0.011809-0
        19648315
        Int. J. Syst. Evol. Microbiol. 2010; 60: 44-50
      2. Kumar, S. 2017. Physiology of rumen bacteria associated with low methane emitting sheep. PhD Diss. Massey Univ., Palmerston North, New Zealand. https://mro.massey.ac.nz/handle/10179/13403.

        • Li F.
        • Li C.
        • Chen Y.
        • Liu J.
        • Zhang C.
        • Irving B.
        • Fitzsimmons C.
        • Plastow G.
        • Guan L.L.
        Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle..
        https://doi.org/10.1186/s40168-019-0699-1
        31196178
        Microbiome. 2019; 7: 92
        • Marshall C.J.
        • Beck M.R.
        • Garrett K.
        • Barrell G.K.
        • Al-Marashdeh O.
        • Gregorini P.
        Grazing dairy cows with low milk urea nitrogen breeding values excrete less urinary urea nitrogen..
        https://doi.org/10.1016/j.scitotenv.2020.139994
        Sci. Total Environ. 2020; 739: 1-8
        • Marshall C.J.
        • Beck M.R.
        • Garrett K.
        • Barrell G.K.
        • Al-Marashdeh O.
        • Gregorini P.
        Nitrogen balance of dairy cows divergent for milk urea nitrogen breeding values consuming either plantain or perennial ryegrass..
        https://doi.org/10.3390/ani11082464
        34438921
        Animals (Basel). 2021; 11 (a): 2464
        • Marshall C.J.
        • Beck M.R.
        • Garrett K.
        • Fleming A.E.
        • Barrell G.K.
        • Al-Marashdeh O.
        • Gregorini P.
        Dairy cows with different milk urea nitrogen breeding values display different grazing behaviours..
        https://doi.org/10.1016/j.applanim.2021.105429
        Appl. Anim. Behav. Sci. 2021; 242 (105429) (b)
        • Martin M.
        Cutadapt removes adapter sequences from high-throughput sequencing reads..
        EMBnet. J. 2011; 17: 10-12
        • Morgavi D.P.
        • Rathahao-Paris E.
        • Popova M.
        • Boccard J.
        • Nielsen K.F.
        • Boudra H.
        Rumen microbial communities influence metabolic phenotypes in lambs..
        https://doi.org/10.3389/fmicb.2015.01060
        26528248
        Front. Microbiol. 2015; 6: 1060
        • Palm N.W.
        • De Zoete M.R.
        • Cullen T.W.
        • Barry N.A.
        • Stefanowski J.
        • Hao L.
        • Degnan P.H.
        • Hu J.
        • Peter I.
        • Zhang W.
        • Ruggiero E.
        • Cho J.H.
        • Goodman A.L.
        • Flavell R.A.
        Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease..
        https://doi.org/10.1016/j.cell.2014.08.006
        Cell. 2014; 158: 1000-1010
      3. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Accessed Apr. 5, 2021. https://www.r-project.org/.

        • Seshadri R.
        • Leahy S.C.
        • Attwood G.T.
        • Teh K.H.
        • Lambie S.C.
        • Cookson A.L.
        • Eloe-Fadrosh E.A.
        • Pavlopoulos G.A.
        • Hadjithomas M.
        • Varghese N.J.
        • Paez-Espino D.
        • Perry R.
        • Henderson G.
        • Creevey C.J.
        • Terrapon N.
        • Lapebie P.
        • Drula E.
        • Lombard V.
        • Rubin E.
        • Kyrpides N.C.
        • Henrissat B.
        • Woyke T.
        • Ivanova N.N.
        • Kelly W.J.
        • Palevic N.
        • Janssen P.H.
        • Ronimus R.S.
        • Noel S.
        • Soni P.
        • Reilly K.
        • Atherly T.
        • Ziemer C.
        • Wright A.D.
        • Ishaq S.
        • Cotta M.
        • Thompson S.
        • Crosley K.
        • McKain N.
        • Wallace J.J.
        • Flint H.J.
        • Martin J.C.
        • Forster R.J.
        • Gruninger R.J.
        • McAllister T.
        • Gilbert R.
        • Ouwerkerk D.J.
        • Klieve A.J.
        • Al Jassim R.
        • Denman S.
        • McSweeney C.
        • Rosewarne C.
        • Koike S.
        • Kobayashi Y.
        • Mitsumori M.
        • Shinkai T.
        • Cravero S.
        • Cerón Cucchi M.
        Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection..
        10.1038/nbt.4110
        Nat. Biotechnol. 2018; 36: 359-367
        • Smith P.E.
        • Enriquez-Hidalgo D.
        • Hennessy D.
        • McCabe M.S.
        • Kenny D.A.
        • Kelly A.K.
        • Waters S.M.
        Sward type alters the relative abundance of members of the rumen microbial ecosystem in dairy cows..
        https://doi.org/10.1038/s41598-020-66028-3
        32518306
        Sci. Rep. 2020; 10: 9317
        • Sniffen C.J.
        • Robinson P.H.
        Microbial growth and flow as influenced by dietary manipulations..
        https://doi.org/10.3168/jds.S0022-0302(87)80027-9
        J. Dairy Sci. 1987; 70: 425-441
        • Stoop W.M.
        • Bovenhuis H.
        • van Arendonk J.A.M.
        Genetic parameters for milk urea nitrogen in relation to milk production traits..
        https://doi.org/10.3168/jds.2006-434
        17369239
        J. Dairy Sci. 2007; 90: 1981-1986
        • Ventorino V.
        • Robertiello A.
        • Cimini D.
        • Argenzio O.
        • Schiraldi C.
        • Montella S.
        • Faraco V.
        • Ambrosanio A.
        • Viscardi S.
        • Pepe O.
        Bio-based succinate production fromArundo donax hydrolysate with the new natural succinic acid-producing strainBasfia succiniciproducens BPP7..
        https://doi.org/10.1007/s12155-017-9814-y
        Bioenergy Res. 2017; 10: 488-498
        • Wallace R.J.
        • Sasson G.
        • Garnsworthy P.C.
        • Tapio I.
        • Gregson E.
        • Bani P.
        • Huhtanen P.
        • Bayat A.R.
        • Strozzi F.
        • Biscarini F.
        • Snelling T.J.
        • Saunders N.
        • Potterton S.L.
        • Craigon J.
        • Minuti A.
        • Trevisi E.
        • Callegari M.L.
        • Cappelli F.P.
        • Cabezas-Garcia E.H.
        • Vilkki J.
        • Pinares-Patino C.
        • Fliegerová K.O.
        • Mrázek J.
        • Sechovcová H.
        • Kopečný J.
        • Bonin A.
        • Boyer F.
        • Taberlet P.
        • Kokou F.
        • Halperin E.
        • Williams J.L.
        • Shingfield K.J.
        • Mizrahi I.
        A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions..
        https://doi.org/10.1126/sciadv.aav8391
        31281883
        Sci. Adv. 2019; 5 (eaav8391)
        • Wallace R.J.
        • Rooke J.A.
        • McKain N.
        • Duthie C.A.
        • Hyslop J.J.
        • Ross D.W.
        • Waterhouse A.
        • Watson M.
        • Roehe R.
        The rumen microbial metagenome associated with high methane production in cattle..
        https://doi.org/10.1186/s12864-015-2032-0
        BMC Genom. 2015; 16: 1-14
        • Wang H.
        • Wu F.
        • Guan T.
        • Zhu Y.
        • Yu Z.
        • Zhang D.
        • Zhang S.
        • Su H.
        • Cao B.
        Chopping roughage length improved rumen development of weaned calves as revealed by rumen fermentation and bacterial community..
        https://doi.org/10.3390/ani10112149
        33227931
        Animals (Basel). 2020; 10: 2149
        • Xue M.Y.
        • Sun H.Z.
        • Wu X.H.
        • Guan L.L.
        • Liu J.X.
        Assessment of rumen bacteria in dairy cows with varied milk protein yield..
        https://doi.org/10.3168/jds.2018-15974
        30981485
        J. Dairy Sci. 2019; 102: 5031-5041
        • Zhong Y.
        • Xue M.Y.
        • Sun H.Z.
        • Valencak T.G.
        • Guan L.L.
        • Liu J.
        Rumen and hindgut bacteria are potential indicators for mastitis of mid-lactating Holstein dairy cows..
        https://doi.org/10.3390/microorganisms8122042
        33419337
        Microorganisms. 2020; 8: 2042