ABSTRACT
Objective
Materials and Methods
Results and Discussion
Implications and Applications
Key words
INTRODUCTION
- Morris F.E.
- Branine M.E.
- Galyean M.L.
- Hubbert M.E.
- Freeman A.S.
- Lofgreen L.P.
Crossland, W., L. Tedeschi, T. R. Callaway, M. Miller, B. W. Smith, and M. Cravey. 2015. Effects of rotating antibiotic and ionophore feed additives on enteric methane and volatile fatty acid production of steers consuming a high forage diet. Accessed Dec. 14, 2020. http://m.jtmtg.org/abs/t/63995.
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
- Bell N.L.
- Callaway T.R.
- Anderson R.C.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
MATERIALS AND METHODS
Animals and Facilities
Diet and Treatment
Item (% CM) | Bluestem hay | DDGS |
---|---|---|
OM | 93.12 | 94.28 |
CP | 4.86 | 29.56 |
NDF | 83.81 | 51.86 |
ADF | 42.07 | 20.72 |
- 1CON: 0 mg·head−1·d−1 monensin (Rumensin 90; Elanco Animal Health) for the entirety of the study.
- 2MON: 200 mg·head−1·d−1 monensin for the entirety of the study.
- 3CYC: 200 mg·head−1·d−1 monensin for 14 d and 0 mg·head−1·d−1 of monensin for the subsequent 14 d. This cycle was repeated 4 times, resulting in four 28-d cycles.
Experimental Protocol and Sampling
Laboratory Analyses
Intake and Digestion.
- Casali A.O.
- Detmann E.
- De Campos Valadares Filho S.
- Pereira J.C.
- Henriques L.T.
- de Freitas S.G.
- Paulino M.F.
VFA.
Statistical Analysis
RESULTS AND DISCUSSION
Intake
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
Item | Treatment | SEM | P-value | ||||
---|---|---|---|---|---|---|---|
CON | MON | CYC | Treatment | Cycle | T × C | ||
OM intake (g/kg of BW) | |||||||
Forage | 16.04 | 18.15 | 14.07 | 1.41 | 0.17 | <0.01 | 0.83 |
DDGS | 3.43 | 3.43 | 3.43 | — | — | — | — |
Total | 19.48 | 21.58 | 17.50 | 1.41 | 0.17 | <0.01 | 0.82 |
Digestible | 12.45 | 13.00 | 11.59 | 0.65 | 0.34 | <0.01 | 0.35 |
NDF intake (g/kg of BW) | |||||||
Forage | 14.29 | 16.16 | 12.51 | 1.26 | 0.17 | <0.01 | 0.86 |
DDGS | 1.87 | 1.87 | 1.87 | — | — | — | — |
Total | 16.19 | 18.03 | 14.38 | 1.26 | 0.17 | <0.01 | 0.85 |
Digestible | 11.26 | 11.82 | 10.13 | 0.71 | 0.27 | <0.01 | 0.67 |
Digestion
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.

Total-tract digestion (%) | Treatment | P-value | |||||
---|---|---|---|---|---|---|---|
CON | MON | CYC | Treatment | Cycle | T × C | ||
OM | 65.38 | 60.88 | 66.81 | 0.41 | <0.01 | 0.08 | |
(Mean ± SEM) | (62.26, 68.66) | (57.98, 63.93) | (63.83, 70.16) | ||||
NDF | 71.00 | 66.13 | 71.06 | 0.32 | <0.01 | 0.37 | |
(Mean ± SEM) | (68.49, 73.61) | (63.79, 68.56) | (68.54, 76.67) |
Rumen pH
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
- Bell N.L.
- Anderson R.C.
- Callaway T.R.
- Franco M.O.
- Sawyer J.E.
- Wickersham T.A.
VFA
Item | Treatment | SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | MON | CYC | Treatment | Cycle | Hour | T × C | T × H | T × H × C | ||
Total VFA (mM) | 63.16 | 61.40 | 61.37 | 2.80 | 0.88 | <0.01 | <0.01 | 0.70 | 0.63 | 0.12 |
Acetate:propionate | 3.88 | 3.23 | 3.10 | 0.08 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.16 |
Molar percentage (%) | ||||||||||
Acetate | 70.93 | 67.63 | 66.95 | — | <0.01 | <0.01 | <0.01 | <0.01 | 0.67 | 0.56 |
(Mean ± SEM) | (70.36, 71.49) | (67.03, 68.22) | (66.34, 67.55) | |||||||
Propionate | 18.27 | 20.95 | 21.66 | — | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.12 |
(Mean ± SEM) | (18.01, 18.54) | (20.58, 21.34) | (21.26, 22.07) | |||||||
Butyrate | 8.70 | 8.45 | 8.26 | — | 0.55 | 0.01 | <0.01 | 0.48 | 0.22 | 0.65 |
(Mean ± SEM) | (8.41, 9.01) | (8.18, 8.74) | (8.00, 8.54) | |||||||
Isobutyrate | 0.60 | 0.74 | 0.75 | — | 0.02 | <0.01 | <0.01 | 0.83 | 0.40 | 0.76 |
(Mean ± SEM) | (0.57, 0.63) | (0.70, 0.77) | (0.71, 0.79) | |||||||
Valerate | 0.51 | 0.56 | 0.63 | — | 0.05 | <0.01 | <0.01 | 0.87 | 0.06 | 0.63 |
(Mean ± SEM) | (0.49, 0.54) | (0.54, 0.59) | (0.60, 0.66) | |||||||
Isovalerate | 0.61 | 0.87 | 0.87 | — | 0.01 | <0.01 | <0.01 | 0.48 | 0.03 | 0.11 |
(Mean ± SEM) | (0.57, 0.66) | (0.80, 0.93) | (0.81, 0.94) | |||||||
pH | 5.59 | 5.83 | 5.70 | 0.08 | 0.13 | <0.01 | <0.01 | 0.16 | 0.67 | 0.74 |
Item | Treatment | SEM | P-value | ||||
---|---|---|---|---|---|---|---|
CON | MON | CYC | Treatment | Hour | T × H | ||
Cycle 1 | |||||||
Acetate:propionate | 3.92 | 2.45 | 2.17 | 0.12 | <0.01 | <0.01 | 0.11 |
Molar percentage (%) | |||||||
Acetate | 71.06 | 62.00 | 60.17 | — | <0.01 | <0.01 | 0.80 |
(Mean ± SEM) | (70.27, 71.84) | (61.11, 62.89) | (59.24, 61.09) | ||||
Propionate | 18.12 | 25.25 | 27.75 | — | <0.01 | 0.02 | 0.01 |
(Mean ± SEM) | (17.73, 18.54) | (24.36, 26.22) | (26.63, 28.99) | ||||
Cycle 2 | |||||||
Acetate:propionate | 3.80 | 3.12 | 3.06 | 0.12 | <0.01 | <0.01 | 0.81 |
Molar percentage (%) | |||||||
Acetate | 69.37 | 66.79 | 66.64 | — | 0.04 | <0.01 | 0.72 |
(Mean ± SEM) | (68.56, 70.17) | (65.95, 67.61) | (65.79, 67.47) | ||||
Propionate | 18.28 | 21.37 | 21.78 | — | <0.01 | <0.01 | 0.94 |
(Mean ± SEM) | (17.88, 18.71) | (20.78, 22.01) | (21.16, 22.45) | ||||
Cycle 3 | |||||||
Acetate:propionate | 4.03 | 3.71 | 3.59 | 0.12 | 0.04 | <0.01 | 0.02 |
Molar percentage (%) | |||||||
Acetate | 72.15 | 70.78 | 70.08 | — | 0.18 | <0.01 | 0.44 |
(Mean ± SEM) | (71.37, 72.91) | (69.99, 71.57) | (69.28, 70.87) | ||||
Propionate | 17.92 | 19.12 | 19.54 | — | 0.04 | <0.01 | <0.01 |
(Mean ± SEM) | (17.54, 18.33) | (18.67, 19.60) | (19.06, 20.04) | ||||
Cycle 4 | |||||||
Acetate:propionate | 3.79 | 3.65 | 3.60 | 0.12 | 0.51 | <0.01 | 0.09 |
Molar percentage (%) | |||||||
Acetate | 71.11 | 70.56 | 70.40 | — | 0.80 | <0.01 | 0.28 |
(Mean ± SEM) | (70.32, 71.89) | (69.76, 71.34) | (69.61, 71.19) | ||||
Propionate | 18.79 | 19.35 | 19.70 | — | 0.39 | <0.01 | 0.17 |
(Mean ± SEM) | (18.36, 19.25) | (18.89, 19.85) | (19.22, 20.22) |
Acetate and Propionate.



Total VFA, Butyrate, and the Minor VFA.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
- Methane emissions from feedlot cattle fed barley or corn diets..https://doi.org/10.2527/2005.833653x15705762J. Anim. Sci. 2005; 83: 653-661
- Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay..https://doi.org/10.2527/jas.2016.101128727060J. Anim. Sci. 2017; 95 (a): 2736-2746
- Effect of monensin withdrawal on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay..https://doi.org/10.2527/jas.2016.101328727043J. Anim. Sci. 2017; 95 (b): 2747-2757
- An analysis of transformations..J. Royal Stat. Soc., Ser. B. 1964; 26: 211-252
- Ionophores: Their use as ruminant growth promotants and impact on food safety..14503688Curr. Issues Intest. Microbiol. 2003; 4: 43-51
- Influence of incubation time and particle size on indigestible compound in cattle feeds and feces obtained by in situ procedures..10.1590/S1516-35982008000200021Rev. Bras. Zootec. 2008; 37: 335-342
- Influence of intraruminal monensin administration on performance and forage use in beef cattle grazing early-summer bluestem range..https://doi.org/10.2134/jpa1990.0088J. Prod. Agric. 1990; 3: 88-92
Crossland, W., L. Tedeschi, T. R. Callaway, M. Miller, B. W. Smith, and M. Cravey. 2015. Effects of rotating antibiotic and ionophore feed additives on enteric methane and volatile fatty acid production of steers consuming a high forage diet. Accessed Dec. 14, 2020. http://m.jtmtg.org/abs/t/63995.
Crosthwait, G. L., S. E. Coleman, and R. D. Wyatt. 1979. Effect of monensin on weight gain and forage intake by replacement heifers on native range. Anim. Sci. Res. Report, pages 87–90. Oklahoma Agric. Exp. Stn.
- Monensin-resistant bacteria in the rumen of calves on monensin-containing and unmedicated diets..https://doi.org/10.1128/aem.46.1.160-164.19836614902Appl. Environ. Microbiol. 1983; 46: 160-164
DeLaney, D. S. 1980. Effects of monensin on intake, digestibility, and turnover of organic matter and bacterial protein in grazing cattle. MS Thesis. Texas A&M Univ., College Station.
Ellis, W. C., G. W. Horn, D. Delaney, and K. R. Pond. 1983. Effects of ionophores on grazed forage utilization and their economic value for cattle on wheat pasture. Pages 343–355 in Proc. Nat. Wheat Past. Symp. MP-115. Oklahoma Agric. Exp. Stn.
- Influence of ruminally dispensed monensin and forage maturity on intake and digestion..https://doi.org/10.2307/4002609J. Range Manage. 1993; 46: 214-220
Galyean, M. L., and M. E. Hubbert. 1989. Rationale for use and selection of ionophores in ruminant production. Pages 64–81 in Proc. Southwest Nutr. Manage. Conf. Univ. Arizona, Tucson.
Goering, H. K., and P. J. Van Soest. 1975. Forage Fiber Analysis. (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook, 379. USDA ARS.
- Influence of monensin on the performance of cattle..https://doi.org/10.2527/jas1984.5861484x6378865J. Anim. Sci. 1984; 58: 1484-1498
- Efficacy of ionophores in cattle diets for mitigation of enteric methane..https://doi.org/10.2527/jas.2005-65216775074J. Anim. Sci. 2006; 84: 1896-1906
- Monensin, forage intake and lactation of range beef cows..https://doi.org/10.2527/jas1978.471247xJ. Anim. Sci. 1978; 47 (a): 247-254
- Monensin effects on rumen turnover rate, twenty-four-hour VFA pattern, nitrogen components and cellulose disappearance..https://doi.org/10.2527/jas1978.471255xJ. Anim. Sci. 1978; 47 (b): 255-261
- Effect of rotating monensin plus tylosin and lasalocid on performance, ruminal fermentation, and site and extent of digestion in feedlot cattle..https://doi.org/10.2527/1990.68103069x2254185J. Anim. Sci. 1990; 68: 3069-3078
- Methane production by ruminants: Its contribution to global warming..https://doi.org/10.1051/animres:2000119Ann. Zootech. 2000; 49: 231-253
- The effect of high dietary cation concentration of methanogensis by steers fed diets with and without ionophores..https://doi.org/10.2527/jas1986.6261737x3733567J. Anim. Sci. 1986; 62: 1737-1741
- Ionophore resistance of ruminal bacteria and its potential impact on human health..FEMS Microbiol. Rev. 2003; 27: 65-74
- Effect of ionophore on ruminal fermentation..https://doi.org/10.1128/aem.55.1.1-6.19892650616Appl. Environ. Microbiol. 1989; 55: 1-6
- An analysis of variance test for normality (Complete Samples)..Biometrika. 1965; 52: 691-698
- Reversible monensin adaptation in Enterococcus faecium, Enterococcus faecalis and Clostridium perfringens of cattle origin: Potential impact on human food safety..https://doi.org/10.1093/jac/dks236J. Antimicrob. Chemother. 2012; 67: 2388-2395
Sokal, R. R., and J. F. Rohlf. 2012. Biometry. 4th ed. W.H. Freeman and Co.
Thomas, P. C., and P. A. Martin. 1988. The influence of nutrient balance on milk yield and composition. Pages 97–118 in Nutrition and Lactation in the Dairy Cow. P. C. Garnsworthy, ed. Butterworths.
- Effect of monensin on feed efficiency for maintaining gestating mature cows wintered on meadow hay..https://doi.org/10.2527/jas1977.443338xJ. Anim. Sci. 1977; 44: 338-342
- In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles..10.1590/S1516-35982011000300027Rev. Bras. Zootec. 2011; 40: 666-675
- Supplementation and monensin effects on digesta kinetics. I. Cattle grazing summer range..https://doi.org/10.2307/3898994J. Range Manage. 1990; 43 (a): 378-382
- Supplementation and monensin effects on digesta kinetics. II. Cattle grazing winter range..https://doi.org/10.2307/3898995J. Range Manage. 1990; 43 (b): 383-386
Article info
Publication history
Footnotes
The authors have not declared any conflicts of interest.