ABSTRACT
Objective
Materials and Methods
Results and Discussion
Implications and Applications
Key words
INTRODUCTION
MATERIALS AND METHODS
Animal Care and Use
Birds and Husbandry
Tannin Analysis
Experimental Diets
Item | Dextrose | Corn | Grain sorghum variety | ||
---|---|---|---|---|---|
Red/bronze | White/tan | US No. 2 | |||
DM (%) | — | 84.58 | 87.48 | 89.93 | 84.44 |
GE, as fed (kcal/kg) | 3,376 | 3,926 | 3,752 | 3,686 | 3,653 |
Ash (%) | — | 1.07 | 0.90 | 1.10 | 1.39 |
Crude fat (%) | — | 3.13 | 2.89 | 2.46 | 2.93 |
Crude fiber (%) | — | 1.50 | 1.80 | 1.70 | 2.20 |
CP (%) | — | 7.52 | 8.87 | 9.33 | 8.65 |
Methionine (%) | — | 0.15 | 0.15 | 0.17 | 0.14 |
Lysine (%) | — | 0.26 | 0.24 | 0.24 | 0.23 |
Threonine (%) | — | 0.26 | 0.30 | 0.31 | 0.28 |
Item | Basal diet phase | ||
---|---|---|---|
Starter (1–11 d) | Grower (12–24 d) | Finisher (25–47 d) | |
Ingredient (%) | |||
Corn | 49.45 | 58.60 | 63.11 |
Soybean meal, 47.5% CP | 42.05 | 33.55 | 28.81 |
Fat, vegetable | 3.59 | 2.96 | 3.47 |
Mono-dicalcium phosphate | 1.89 | 1.83 | 1.73 |
Limestone | 1.57 | 1.56 | 1.50 |
Sodium chloride | 0.55 | 0.59 | 0.60 |
dl-Methionine | 0.33 | 0.28 | 0.24 |
l-Threonine | 0.00 | 0.005 | 0.01 |
Biolys | 0.05 | 0.10 | 0.11 |
Choline chloride, 60% | 0.18 | 0.19 | 0.12 |
Vitamin and mineral premix 2 Vitamin premix per kilogram of diet: vitamin A = 16,435.29 IU; vitamin D3 = 3,582,452; 25-hydroxyvitamin D3 = 0.08 mg; vitamin E = 156.53 IU; vitamin B12 = 0.05 mg; biotin = 0.47 mg; menadione = 7.04 mg; thiamine 4.23 mg; riboflavin = 14.09 mg; d-pantothenate = 23.48 mg; vitamin B6 = 7.44 mg; niacin = 93.92 mg; folic acid = 3.13 mg. Trace mineral premix per milligram per kilogram of diet: manganese = 113.59%; zinc = 107.90%; iron = 0.22%; copper = 5.68%; iodine = 3.41%; cobalt = 1.70%; selenium = 0.34%. | 0.22 | 0.23 | 0.20 |
BMD 50 | 0.06 | 0.06 | 0.06 |
Saccox 60 | 0.06 | 0.05 | 0.04 |
Calculated composition | |||
ME (kcal/kg) | 2,983 | 3,039 | 3,125 |
CP (%) | 23.62 | 20.38 | 18.51 |
Crude fat (%) | 6.11 | 5.68 | 6.27 |
Calcium (%) | 1.02 | 0.98 | 0.94 |
Sodium (%) | 0.24 | 0.25 | 0.26 |
Lysine (%) | 1.52 | 1.30 | 1.17 |
Methionine (%) | 0.71 | 0.62 | 0.55 |
Methionine + cysteine (SAA; %) | 1.11 | 0.97 | 0.88 |
Total phosphorus (%) | 0.82 | 0.77 | 0.73 |
Available phosphorus (%) | 0.47 | 0.45 | 0.43 |
Analyzed composition | |||
CP (%) | 25.28 | 20.91 | 18.78 |
Crude fat (%) | 5.88 | 4.75 | 5.74 |
Calcium (%) | 1.04 | 2.71 | 1.17 |
Sodium (%) | 0.20 | 0.13 | 0.13 |
Lysine (%) | 1.76 | 1.15 | 1.19 |
Methionine (%) | 1.32 | 0.38 | 0.47 |
Methionine + cysteine (SAA; %) | 0.99 | 0.65 | 0.77 |
Total phosphorus (%) | 0.82 | 0.92 | 0.98 |
Item | Starter treatment | |||
---|---|---|---|---|
Dextrose control | Red/bronze | White/tan | US No. 2 | |
Ingredient (%) | ||||
Basal starter diet | 87.12 | 88.40 | 88.16 | 89.35 |
Grain sorghum | 0.00 | 11.60 | 11.84 | 10.65 |
Dextrose | 12.88 | 0.00 | 0.00 | 0.00 |
Calculated composition | ||||
ME (kcal/kg) | 3,066 | 3,035 | 3,000 | 3,000 |
CP (%) | 20.47 | 21.99 | 21.83 | 22.00 |
Crude fat (%) | 5.11 | 5.50 | 5.45 | 5.52 |
Calcium (%) | 1.16 | 1.18 | 1.17 | 1.19 |
Sodium (%) | 0.19 | 0.19 | 0.19 | 0.20 |
Lysine (%) | 1.20 | 1.24 | 1.24 | 1.23 |
Methionine (%) | 0.59 | 0.62 | 0.62 | 0.63 |
Methionine + cysteine (SAA; %) | 0.91 | 0.97 | 0.96 | 0.97 |
Total phosphorus (%) | 0.71 | 0.76 | 0.76 | 0.76 |
Available phosphorus (%) | 0.46 | 0.48 | 0.48 | 0.49 |
Analyzed composition | ||||
CP (%) | 22.05 | 21.73 | 25.43 | 22.64 |
Crude fat (%) | 5.55 | 6.36 | 5.35 | 5.76 |
Calcium (%) | 1.13 | 1.14 | 1.12 | 0.94 |
Sodium (%) | 0.18 | 0.17 | 0.14 | 0.13 |
Lysine (%) | 1.19 | 1.22 | 1.40 | 1.33 |
Methionine (%) | 0.69 | 0.68 | 0.66 | 0.62 |
Methionine + cysteine (SAA; %) | 0.98 | 0.99 | 1.00 | 0.96 |
Total phosphorus (%) | 0.76 | 0.82 | 0.82 | 0.76 |
Item | Grower treatment | |||
---|---|---|---|---|
Dextrose control | Red/bronze | White/tan | US No. 2 | |
Ingredient (%) | ||||
Basal grower diet | 85.04 | 86.54 | 86.30 | 86.18 |
Grain sorghum | 0.00 | 13.46 | 13.70 | 13.82 |
Dextrose | 14.96 | 0.00 | 0.00 | 0.00 |
Calculated composition | ||||
ME (kcal/kg) | 3,126 | 3,090 | 3,050 | 3,052 |
CP (%) | 17.10 | 18.80 | 18.63 | 18.62 |
Crude fat (%) | 4.64 | 5.07 | 5.03 | 5.06 |
Calcium (%) | 1.05 | 1.06 | 1.06 | 1.06 |
Sodium (%) | 0.20 | 0.20 | 0.20 | 0.20 |
Lysine (%) | 1.01 | 1.05 | 1.05 | 1.05 |
Methionine (%) | 0.50 | 0.54 | 0.53 | 0.53 |
Methionine + cysteine (SAA; %) | 0.78 | 0.85 | 0.84 | 0.84 |
Total phosphorus (%) | 0.66 | 0.71 | 0.71 | 0.71 |
Available phosphorus (%) | 0.43 | 0.45 | 0.45 | 0.45 |
Analyzed composition | ||||
CP (%) | 20.47 | 19.52 | 20.53 | 20.17 |
Crude fat (%) | 4.50 | 4.63 | 4.92 | 4.91 |
Calcium (%) | 0.92 | 1.04 | 1.02 | 0.97 |
Sodium (%) | 0.16 | 0.18 | 0.16 | 0.17 |
Lysine (%) | 1.00 | 1.09 | 1.10 | 1.14 |
Methionine (%) | 0.55 | 0.53 | 0.59 | 0.54 |
Methionine + cysteine (SAA; %) | 0.80 | 0.82 | 0.87 | 0.31 |
Total phosphorus (%) | 0.70 | 0.76 | 0.76 | 0.73 |
GE (kcal/kg) | 4,025 | 4,266 | 4,303 | 4,340 |
Item | Finisher treatment | |||
---|---|---|---|---|
Dextrose control | Red/bronze | White/tan | US No. 2 | |
Ingredient (%) | ||||
Basal finisher diet | 84.06 | 85.66 | 85.40 | 85.27 |
Grain sorghum | 0.00 | 14.35 | 14.61 | 14.74 |
Dextrose | 15.95 | 0.00 | 0.00 | 0.00 |
Calculated composition | ||||
ME (kcal/kg) | 3,207 | 3,171 | 3,127 | 3,130 |
CP (%) | 15.26 | 17.05 | 16.88 | 16.87 |
Crude fat (%) | 5.09 | 5.56 | 5.51 | 5.54 |
Calcium (%) | 0.96 | 0.98 | 0.98 | 0.98 |
Sodium (%) | 0.20 | 0.20 | 0.20 | 0.20 |
Lysine (%) | 0.89 | 0.94 | 0.94 | 0.94 |
Methionine (%) | 0.45 | 0.48 | 0.48 | 0.48 |
Methionine + cysteine (SAA; %) | 0.70 | 0.77 | 0.76 | 0.76 |
Total phosphorus (%) | 0.62 | 0.67 | 0.67 | 0.67 |
Available phosphorus (%) | 0.40 | 0.43 | 0.42 | 0.42 |
Analyzed composition | ||||
CP (%) | 18.49 | 17.63 | 18.44 | 18.10 |
Crude fat (%) | 4.95 | 5.68 | 5.82 | 5.80 |
Calcium (%) | 0.90 | 0.95 | 1.04 | 1.07 |
Sodium (%) | 0.13 | 0.17 | 0.15 | 0.21 |
Lysine (%) | 0.95 | 0.99 | 1.02 | 0.91 |
Methionine (%) | 0.35 | 0.50 | 0.48 | 0.44 |
Methionine + cysteine (SAA; %) | 0.62 | 0.77 | 0.75 | 0.70 |
Total phosphorus (%) | 0.67 | 0.64 | 0.70 | 0.70 |
GE (kcal/kg) | 4,249 | 4,342 | 4,348 | 4,423 |
Excreta Collection and Measurements
where GEI = GE intake; GEE = GE output in excreta; NI = nitrogen intake from the diet; NE = nitrogen output from excreta; and 8.73 = nitrogen correction factor from previous research (
Statistical Analysis
RESULTS AND DISCUSSION
Tannin Analysis
AMEn Determination
Treatment | AMEn grain, (kcal/kg) | 72-h Feed intakediet (kg) | ||
---|---|---|---|---|
Grain type | Diet phase | |||
Dextrose/control | Grower | 3,883 ± 262ab | 1.55 ± 0.13d | |
Red/bronze | Grower | 3,336 ± 185bc | 1.77 ± 0.09d | |
White/tan | Grower | 4,000 ± 185a | 2.04 ± 0.09c | |
US No. 2 | Grower | 3,341 ± 198bc | 1.70 ± 0.09d | |
Dextrose/control | Finisher | 2,904 ± 262c | 2.17 ± 0.13bc | |
Red/bronze | Finisher | 3,001 ± 185b | 2.33 ± 0.09b | |
White/tan | Finisher | 3,599 ± 185ab | 2.81 ± 0.09a | |
US No. 2 | Finisher | 3,705 ± 198ab | 2.68 ± 0.09a | |
Main effects means | ||||
Dextrose/control | 3,394 ± 185ab | 1.86 ± 0.11c | ||
Red/bronze | 3,168 ± 131b | 2.05 ± 0.08bc | ||
White/tan | 3,800 ± 140a | 2.43 ± 0.08a | ||
US No. 2 | 3,523 ± 140ab | 2.19 ± 0.08b | ||
Grower | 3,640 ± 105a | 1.77 ± 0.05b | ||
Finisher | 3,302 ± 105b | 2.49 ± 0.05a | ||
P-value | ||||
Grain type | 0.0134 | 0.0012 | ||
Diet phase | 0.0277 | <0.001 | ||
Grain type × diet phase | 0.0387 | 0.0123 |
- Selle P.H.
- Liu S.Y.
- Cai J.
- Cowieson A.J.
- Liu S.Y.
- Truong H.H.
- Khoddami A.
- Moss A.F.
- Thomson P.C.
- Roberts T.H.
- Selle P.H.
- Truong H.H.
- Neilson K.A.
- McInerney B.V.
- Khoddami A.
- Roberts T.H.
- Cadogan D.J.
- Liu S.Y.
- Selle P.H.
- Truong H.H.
- Neilson K.A.
- McInerney B.V.
- Khoddami A.
- Roberts T.H.
- Cadogan D.J.
- Liu S.Y.
- Selle P.H.
- Truong H.H.
- Neilson K.A.
- McInerney B.V.
- Khoddami A.
- Roberts T.H.
- Cadogan D.J.
- Liu S.Y.
- Selle P.H.
- Truong H.H.
- Neilson K.A.
- McInerney B.V.
- Khoddami A.
- Roberts T.H.
- Cadogan D.J.
- Liu S.Y.
- Selle P.H.
Performance
Treatment | Diet phase | ||||||
---|---|---|---|---|---|---|---|
Grower (15–22 d) | Finisher (36–43 d) | ||||||
BWG (kg/bird) | FI (kg/bird) | FCR (kg/kg) | BWG (kg/bird) | FI (kg/bird) | FCR (kg/kg) | ||
Dextrose/control | 0.49 ± 0.03 | 0.66 ± 0.05 | 1.35 ± 0.12 | 0.78 ± 0.14 | 1.34 ± 0.12 | 1.72 ± 0.42 | |
Red/bronze | 0.48 ± 0.02 | 0.72 ± 0.04 | 1.50 ± 0.08 | 0.90 ± 0.10 | 1.36 ± 0.08 | 1.51 ± 0.30 | |
White/tan | 0.48 ± 0.02 | 0.69 ± 0.04 | 1.44 ± 0.08 | 0.67 ± 0.10 | 1.29 ± 0.08 | 1.92 ± 0.30 | |
US No. 2 | 0.49 ± 0.02 | 0.70 ± 0.04 | 1.43 ± 0.08 | 0.66 ± 0.10 | 1.30 ± 0.08 | 1.97 ± 0.30 | |
P-value | 0.9629 | 0.8342 | 0.6982 | 0.3272 | 0.9106 | 0.4158 |
- Liu S.
- Selle P.H.
- Cowieson A.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
- Formulation of diets for poultry: The importance of prediction equations to estimate the energy values..https://doi.org/10.21071/az.v62iREV.1953Arch. Zootec. 2013; 62: 1-11
- Differential effect of age on metabolisable energy content of high protein-low energy and low protein-high energy diets in young broiler chicks..https://doi.org/10.1080/000716695084178088590095Br. Poult. Sci. 1995; 36: 631-643
- Factors affecting energy metabolism and evaluating net energy of poultry feed..https://doi.org/10.3382/ps/pez55432416835Poult. Sci. 2020; 99: 487-498
Bedford, M. R., M. Choct, and H. M. O’Neill. 2016. Nutrition Experiments in Pigs and Poultry: A Practical Guide. CABI.
- Nutrient composition and metabolizable energy values of selected grain sorghum varieties and yellow corn..https://doi.org/10.3382/ps.0691147Poult. Sci. 1990; 69: 1147-1155
- Apparent metabolizable energy of glycerin for broiler chickens..https://doi.org/10.3382/ps.2007-0030918212375Poult. Sci. 2008; 87: 317-322
- Sorghum and millet phenols and antioxidants..https://doi.org/10.1016/j.jcs.2006.06.007J. Cereal Sci. 2006; 44: 236-251
- Factors that affect feed intake of meat birds: A review..https://doi.org/10.3923/ijps.2006.905.911Int. J. Poult. Sci. 2006; 5: 905-911
- The effect of dietary energy: Protein ratio, protein quality and food allocation on the efficiency of utilisation of protein by broiler chickens..https://doi.org/10.1080/00071668.2017.139021128990799Br. Poult. Sci. 2018; 59: 100-109
- Sorghum grain in poultry feeding..https://doi.org/10.1079/WPS19900024Worlds Poult. Sci. J. 1990; 46: 246-254
Hagerman, A. E. 2002. Acid Butanol Assay for Proanthocyanidins Tannin Handbook. Miami University.
- Nutritive value of sorghum grain for broiler chickens..https://doi.org/10.4141/cjas82-105Can. J. Anim. Sci. 1982; 62: 869-875
- Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age..https://doi.org/10.1016/j.psj.2021.10128834273647Poult. Sci. 2021; 100 (101288)
- Broiler response to diet energy..https://doi.org/10.3382/ps.07505298786944Poult. Sci. 1996; 75: 529-535
- Influence of white-and red-sorghum varieties and hydrothermal component of steam-pelleting on digestibility coefficients of amino acids and kinetics of amino acids, nitrogen and starch digestion in diets for broiler chickens..https://doi.org/10.1016/j.anifeedsci.2013.08.006Anim. Feed Sci. Technol. 2013; 186: 53-63
- Comparative performance of broiler chickens offered ten equivalent diets based on three grain sorghum varieties as determined by response surface mixture design..https://doi.org/10.1016/j.anifeedsci.2016.05.008Anim. Feed Sci. Technol. 2016; 218: 70-83
- Naked oats: metabolizable energy yield from a range of varieties in broilers, cockerels, and turkeys..https://doi.org/10.1080/0007166080209416418568762Br. Poult. Sci. 2008; 49: 368-377
- Comparative apparent metabolisable energy values of high, medium and low tannin varieties of sorghum in cockerel, guinea fowl and quail..https://doi.org/10.1080/0007166060074187516787858Br. Poult. Sci. 2006; 47: 336-341
NASEM (National Academies of Sciences, Engineering, and Medicine). 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press.
Rodrigues, H., R. Perez-Maldonado, P. Trappett, K. Barram, and M. Kemsley. 2007. Broiler performance in Australian sorghum-based starter and finisher diets (2005 harvest). Pages 93–96 in Proc. 19th Australian Poult. Sci. Symp. The Poultry Research Foundation.
- A broiler chick bioassay for measuring the feeding value of wheat and barley in complete diets..https://doi.org/10.1093/ps/77.3.4499521459Poult. Sci. 1998; 77: 449-455
- Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility..https://doi.org/10.1071/AN12363Anim. Prod. Sci. 2013; 53: 378-387
- Metabolizable energy in poultry nutrition..https://doi.org/10.2307/1308333Bioscience. 1980; 30: 736-741
- Factors affecting the metabolizable energy content of poultry feeds..https://doi.org/10.3382/ps.0390544Poult. Sci. 1960; 39: 544-556
- Limitations to wheat starch digestion in growing broiler chickens: a brief review..https://doi.org/10.1071/AN10271Anim. Prod. Sci. 2011; 51: 583-589
Taylor, J. R., and J. Kruger. 2019. Sorghum and millets: Food and beverage nutritional attributes. Pages 171–224 in Sorghum and Millets. AACC International Press. https://doi.org/10.1016/B978-0-12-811527-5.00007-1.
- An Evaluation of MCF (Micro-Cel-Fat), a new type of fat product..https://doi.org/10.3382/ps.0381114Poult. Sci. 1959; 38: 1114-1119
- Comparative performance of broiler chickens offered nutritionally equivalent diets based on six diverse, ‘tannin-free’ sorghum varieties with quantified concentrations of phenolic compounds, kafirin, and phytate..https://doi.org/10.1071/AN16073Anim. Prod. Sci. 2016; 57: 828-838
- Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: A critical review..https://doi.org/10.3382/ps/pez51132416823Poult. Sci. 2020; 99: 385-406
- Effects of sex, age and food intake upon metabolisable energy values in broiler chickens..https://doi.org/10.1080/000716697084179879280355Br. Poult. Sci. 1997; 38: 281-284
Article info
Publication history
Footnotes
One of the authors works for Novus International Inc., which paid for feed sample analysis in this study. The other authors have not declared any conflicts of interest.