ABSTRACT
Objective
Materials and Methods
Results and Discussion
Implications and Applications
Key words:
INTRODUCTION
- Hoffmann A.
- Cardoso A.S.
- Fonseca N.V.B.
- Romanzini E.P.
- Siniscalchi D.
- Berndt A.
- Ruggieri A.C.
- Reis R.A.
- Carvalho V.M.
- Silva R.R.
- Lins T.O.J.D’.A.
- de Melo Lisboa M.
- Pereira M.M.S.
- Abreu Filho G.
- da Silva J.W.D.
- de Souza S.O.
- Avila V.D.
- do Prado I.N.G.
- Hoffmann A.
- Cardoso A.S.
- Fonseca N.V.B.
- Romanzini E.P.
- Siniscalchi D.
- Berndt A.
- Ruggieri A.C.
- Reis R.A.
- Hoffmann A.
- Cardoso A.S.
- Fonseca N.V.B.
- Romanzini E.P.
- Siniscalchi D.
- Berndt A.
- Ruggieri A.C.
- Reis R.A.
- Hoffmann A.
- Berça A.S.
- Cardoso A.S.
- Fonseca N.V.B.
- Silva M.L.C.
- Leite R.G.
- Ruggieri A.C.
- Reis R.A.
- Cardoso A.S.
- Barbero R.P.
- Romanzini E.P.
- Teobaldo R.W.
- Ongaratto F.
- Fernandes M.H.M.R.
- Ruggieri A.C.
- Reis R.A.
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Hoffmann A.
- Berça A.S.
- Cardoso A.S.
- Fonseca N.V.B.
- Silva M.L.C.
- Leite R.G.
- Ruggieri A.C.
- Reis R.A.
- de Araújo T.L.R.
- da Silva W.L.
- Berça A.S.
- Cardoso A.S.
- Barbero R.P.
- Romanzini E.P.
- Reis R.A.
- Hoffmann A.
- Cardoso A.S.
- Fonseca N.V.B.
- Romanzini E.P.
- Siniscalchi D.
- Berndt A.
- Ruggieri A.C.
- Reis R.A.
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Alhadas H.M.
- Valadares Filho S.C.
- Tedeschi L.O.
- Vilela R.S.R.
- Souza G.A.P.
- Lage B.C.
- Silva B.C.
- Rennó L.N.
- Paulino M.F.
- Boas e Silva Y.R.V.
- Zervoudakis J.T.
- Hatamoto-Zervoudakis L.K.
- Abreu M.L.C.
- da Silva Cabral L.
- Freiria L.B.
- da Rosa e Silva P.I.J.L.
- Possamai A.J.
MATERIALS AND METHODS
Experimental and Environmental Parameters
Pre-Finishing Growth Phase and Animal Feeding
- Ferrari A.C.
- Leite R.G.
- Fonseca N.V.B.
- Romanzini E.P.
- Cardoso A.S.
- Barbero R.P.
- Costa D.F.A.
- Ruggieri A.C.
- Reis R.A.
Component 2 iNDF = indigestible NDF; NFC = nonfibrous carbohydrates; EE = ether extract; fractions of protein: A = NPN, B1 = true protein rapidly degradable in the rumen, B2 = true protein with intermediate degradation rate in the rumen, B3 = true protein with slow degradation rate in the rumen, and C = unavailable or cell-wall-bound true protein.. | MM | Supplement | ||
---|---|---|---|---|
SBM | GC | DDGM | ||
Ingredient (g/kg, DM basis) | ||||
DDG | — | — | — | 413.00 |
Corn | — | 627.46 | 918.42 | 466.72 |
Soybean meal | — | 242.00 | — | — |
Mineral mix | 1,000 | 130.54 | 81.58 | 120.48 |
Chemical composition of supplements (g/kg, DM basis) | ||||
Calcium | 199.00 | 260.00 | 199.00 | 237.00 |
Phosphorus | 40.00 | 100.00 | 40.00 | 100.00 |
Sulfur | 52.00 | 52.00 | 62.00 | 88.00 |
Sodium | 140.00 | 140.00 | 70.00 | 130.00 |
NDF | — | 31.20 | 39.91 | 44.37 |
iNDF | — | 4.34 | 3.84 | 5.69 |
NFC | — | 31.32 | 64.00 | 34.65 |
TDN | — | 68.22 | 73.71 | 70.07 |
EE | — | 2.74 | 3.48 | 5.08 |
Starch | — | 465.08 | 661.26 | 366.19 |
Ash | 100.00 | 198.53 | 160.20 | 181.08 |
CP | — | 16.05 | 7.08 | 16.02 |
RDP (g/kg, CP basis) | — | 642.20 | 592.20 | 586.50 |
RUP (g/kg, CP basis) | — | 35.78 | 40.78 | 41.35 |
Fractions of protein (g/kg; CP basis) | ||||
A | — | 180.90 | 232.70 | 134.10 |
B1 | — | 103.70 | 36.40 | 63.40 |
B2 | — | 658.20 | 575.00 | 714.50 |
B3 | — | 21.20 | 116.50 | 14.60 |
C | — | 36.00 | 39.40 | 73.40 |
Finishing Phase
Item | Supplement | Forage | Total diet |
---|---|---|---|
Pasture finishing system (g/kg, DM basis, pasture) | |||
DDG | 337.6 | — | — |
Ground corn | 611.2 | — | — |
Mineral mixture | 51.2 | — | — |
Chemical composition (g/kg, DM basis) | |||
Starch | 464.7 | — | 325.3 |
OM | 938.9 | 905.4 | 928.8 |
NDF | 417.6 | 614.4 | 476.6 |
Crude energy (MJ/kg of DM) | 184.4 | 174.1 | 181.3 |
EE | 50.1 | 29.8 | 44.0 |
TDN | 814.9 | 530.0 | 729.4 |
CP | 185.0 | 123.3 | 166.5 |
RDP (g/kg, CP basis) | 608.1 | 561.6 | 594.1 |
RUP (g/kg, CP basis) | 391.9 | 438.3 | 405.8 |
Confinement finishing system (g/kg, DM basis, silage) | |||
Corn silage | 300.0 | — | — |
Ground corn | 427.8 | — | — |
DDG | 236.3 | — | — |
Mineral mixture | 35.8 | — | — |
Chemical composition (g/kg, DM basis) | |||
Starch | 325.3 | 300.0 | 317.7 |
OM | 854.5 | 956.5 | 885.1 |
NDF | 209.4 | 582.5 | 321.3 |
Crude energy (MJ/kg of DM) | 417.0 | 178.1 | 345.3 |
EE | 23.8 | 35.2 | 27.2 |
TDN | 750.8 | 632.2 | 715.2 |
CP | 148.0 | 85.3 | 129.2 |
RDP (g/kg, CP basis) | 760.1 | 682.5 | 736.8 |
RUP (g/kg, CP basis) | 239.9 | 317.5 | 263.1 |
Forage Mass and Morphological Composition of Pasture
Nutrient Intake and Digestibility
To quantify iNDF, hand-plucked forage and feces samples were ground in a Willey mill with a 2-mm sieve, conditioned in Ankom F-57 filter bags (Ankom Technology), and allocated in situ into the rumen of cannulated bulls for 288 h, as described by
where DDM = total apparent digestibility of DM (%); TDMI = total DMI (kg/d); and FE = fecal excretion (kg/d).
Analysis of Forage, Feed Samples, Orts, and Feces
Animal Performance and Carcass Characteristics
Statistical Analyses
RESULTS AND DISCUSSION
Item | Supplement | Experimental period | SEM | P-value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MM | SBM | GC | DDGM | 1 | 2 | 3 | 4 | PF | EP | PF × EP | |||
FM (t/ha) | 5.30 | 5.40 | 5.40 | 5.40 | 6.60a | 6.00b | 5.30c | 3.60d | 4.371 | 0.97 | <0.001 | 0.66 | |
Green leaf (g/kg) | 180.00 | 168.00 | 205.00 | 182.00 | 215.70ab | 256.60a | 157.20bc | 106.00c | 0.864 | 0.53 | <0.001 | 0.85 | |
Stem (g/kg) | 129.00 | 122.00 | 118.50 | 128.00 | 178.60a | 114.30b | 133.70b | 69.20c | 0.357 | 0.62 | <0.001 | 1.00 | |
Dead material (g/kg) | 694.00 | 702.00 | 712.00 | 698.00 | 606.00c | 677.00b | 712.00b | 831.00a | 0.806 | 0.58 | <0.001 | 0.92 | |
Chemical composition (g/kg DM) | |||||||||||||
OM | 910.80 | 906.70 | 605.00 | 604.60 | 906.60ab | 910.80a | 900.1a | 909.60ab | 130.412 | 0.31 | 0.04 | 0.62 | |
NFD | 622.30 | 631.10 | 595.50 | 616.70 | 652.70a | 582.90b | 610.2ab | 619.7ab | 59.850 | 0.22 | 0.002 | 0.70 | |
CP | 105.70B | 123.40A | 128.80A | 117.70AB | 137.70a | 144.0a | 95.90b | 100.0b | 22.434 | 0.01 | <0.001 | 0.82 | |
EE | 24.20 | 32.50 | 25.20 | 31.70 | 28.60ab | 37.20a | 27.30ab | 20.6b | 13.595 | 0.06 | <0.001 | 0.43 |
Variable | Finishing system | SEM | P-value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Confinement | Pasture | |||||||||||||
MM | SBM | GC | DDGM | MM | SBM | GC | DDGM | FS | PF × FS | CF | PS | |||
TDMI (kg/d) | 12.76Ba | 13.76Aa | 12.99ABa | 13.61ABa | 8.91Ab | 7.61Bb | 9.52Ab | 9.00Ab | 0.881 | 0.001 | 0.002 | 0.03 | 0.001 | |
TDMI (% of BW) | 2.77Aa | 2.86Aa | 2.74Aa | 2.89Aa | 1.92ABb | 1.63Bb | 2.02Ab | 1.90ABb | 0.184 | ≤0.001 | 0.011 | 0.32 | 0.02 | |
OMI (kg/d) | 11.09Aa | 11.08Aa | 11.08Aa | 11.08Aa | 8.20Ab | 7.02Bb | 8.73Ab | 8.26Ab | 0.603 | ≤0.001 | 0.003 | 0.99 | ≤0.001 | |
CPI (kg/d) | 1.67Aa | 1.67Aa | 1.68Aa | 1.67Aa | 1.32Bb | 1.19Cb | 1.47Ab | 1.36ABb | 0.074 | ≤0.001 | ≤0.001 | 0.99 | ≤0.001 | |
NDFI (kg/d) | 4.79Aa | 4.79Aa | 4.78Aa | 4.77Aa | 3.28Ab | 2.66Bb | 3.58Ab | 3.37Ab | 0.312 | ≤0.001 | 0.012 | 0.99 | 0.001 | |
NFCI (kg/d) | 4.19Aa | 4.18Aa | 4.19Aa | 4.20Aa | 3.35Ab | 2.90Bb | 3.41Ab | 3.27Ab | 0.191 | ≤0.001 | 0.001 | 0.99 | ≤0.001 | |
iBW (kg) | 379Aa | 387Ab | 373Ab | 387Aa | 3 | 394Aa | 389Aa | 392Aa | 389Aa | 5.00 | 0.05 | 0.43 | 0.33 | 0.95 |
fBW (kg) | 513Aa | 528Aa | 493Aa | 500Aa | 5 | 536Aa | 523ABa | 485Ca | 494BCa | 4.00 | 0.94 | 0.31 | 0.07 | 0.001 |
ADG (kg/d) | 1.38Aa | 1.47Aa | 1.45Aa | 1.38Aa | 1.22Aa | 0.94Bb | 1.14Bab | 1.12Bab | 0.071 | ≤0.001 | 0.03 | 0.64 | 0.009 |

- Barbero R.P.
- Malheiros E.B.
- Nave R.L.G.
- Mulliniks J.T.
- Delevatti L.M.
- Koscheck J.F.W.
- Romanzini E.P.
- Ferrari A.C.
- Renesto D.M.
- Berchielli T.T.
- Ruggieri A.C.
- Reis R.A.
- Koscheck J.F.W.
- Romanzini E.P.
- Barbero R.P.
- Delevatti L.M.
- Ferrari A.C.
- Mulliniks J.T.
- Mousquer C.J.
- Berchielli T.T.
- Reis R.A.
- Hoffmann A.
- Berça A.S.
- Cardoso A.S.
- Fonseca N.V.B.
- Silva M.L.C.
- Leite R.G.
- Ruggieri A.C.
- Reis R.A.
- Sampaio R.L.
- de Resende F.D.
- Reis R.A.
- de Oliveira I.M.
- Custódio L.
- Fernandes R.M.
- Pazdiora R.D.
- Siqueira G.R.
Digestibility (g/kg) | Pre-finishing | Finishing system | SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MM | SBM | GC | DDGM | CF | PS | PF | FS | PF × FS | |||
DMD | 677.8A | 615.5B | 641.3AB | 629.5AB | 625.0b | 657.0a | 0.43 | 0.05 | 0.05 | 0.34 | |
OMD | 697.5A | 620.8B | 648.8AB | 633.7B | 601.1b | 699.4a | 0.45 | 0.008 | ≤0.001 | 0.44 | |
CPD | 664.4A | 587.0B | 627.4AB | 602.9AB | 542.1b | 698.7a | 0.49 | 0.02 | ≤0.001 | 0.92 | |
NDFD | 610.3A | 515.0B | 590.2AB | 519.6B | 498.1b | 619.5a | 0.34 | 0.003 | ≤0.001 | 0.36 | |
EED | 524.3 | 569.7 | 594.0 | 522.7 | 543.9 | 561.4 | 1.20 | 0.64 | 0.44 | 0.09 | |
NFCD | 817.7A | 744.6AB | 727.6B | 78.18AB | 748.1b | 787.7a | 0.71 | 0.01 | 0.03 | 0.09 |
- Hoffmann A.
- Cardoso A.S.
- Fonseca N.V.B.
- Romanzini E.P.
- Siniscalchi D.
- Berndt A.
- Ruggieri A.C.
- Reis R.A.
- Ferrari A.C.
- Leite R.G.
- Fonseca N.V.B.
- Romanzini E.P.
- Cardoso A.S.
- Barbero R.P.
- Costa D.F.A.
- Ruggieri A.C.
- Reis R.A.
- Barbero R.P.
- Malheiros E.B.
- de Araújo T.L.R.
- Nave R.L.G.
- Mulliniks J.T.
- Berchielli T.T.
- Ruggieri A.C.
- Reis R.A.
- Hoffmann A.
- Berça A.S.
- Cardoso A.S.
- Fonseca N.V.B.
- Silva M.L.C.
- Leite R.G.
- Ruggieri A.C.
- Reis R.A.
- Barbero R.P.
- Malheiros E.B.
- Nave R.L.G.
- Mulliniks J.T.
- Delevatti L.M.
- Koscheck J.F.W.
- Romanzini E.P.
- Ferrari A.C.
- Renesto D.M.
- Berchielli T.T.
- Ruggieri A.C.
- Reis R.A.
Variable | Pre-finishing | Finishing system | SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MM | SBM | GC | DDGM | CF | PS | PF | FS | PF × FS | |||
HCW (kg) | 280.1 | 288.3 | 292.1 | 287.3 | 293.1a | 281.3b | 2.22 | 0.24 | 0.005 | 0.56 | |
CY (g/kg) | 556.1B | 565.4A | 569.4A | 564.5A | 558.3b | 569.4a | 1.61 | 0.03 | <0.001 | 0.50 | |
LEA (cm) | 71.7 | 74.8 | 76.1 | 76.4 | 74.2 | 75.5 | 0.94 | 0.24 | 0.45 | 0.78 | |
FT (mm) | 4.1 | 4.6 | 4.5 | 3.9 | 5.2a | 3.4b | 0.24 | 0.27 | ≤0.001 | 0.68 |
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Smith W.B.
- Banta J.P.
- Foster J.L.
- Redmon L.A.
- Machado T.J.
- Tedeschi L.O.
- Rouquette Jr., F.M.
- Koscheck J.F.W.
- Romanzini E.P.
- Barbero R.P.
- Delevatti L.M.
- Ferrari A.C.
- Mulliniks J.T.
- Mousquer C.J.
- Berchielli T.T.
- Reis R.A.
- Koscheck J.F.W.
- Romanzini E.P.
- Barbero R.P.
- Delevatti L.M.
- Ferrari A.C.
- Mulliniks J.T.
- Mousquer C.J.
- Berchielli T.T.
- Reis R.A.
- Hoffmann A.
- Berça A.S.
- Cardoso A.S.
- Fonseca N.V.B.
- Silva M.L.C.
- Leite R.G.
- Ruggieri A.C.
- Reis R.A.
APPLICATIONS
ACKNOWLEDGMENTS
LITERATURE CITED
- Impact of different levels of low-fat dried distillers grains on performance of young Nellore bulls during the finishing phase..https://doi.org/10.1111/asj.1362334414634Anim. Sci. J. 2021; 92 (e13623)
AOAC. 2012. AOAC Official Methods of Analysis. 18th ed. AOAC International.
- Impact of hedonic evaluation on consumer’s preferences for beef attributes including its enrichment with n-3 and CLA fatty acids..https://doi.org/10.1016/j.meatsci.2015.08.00526331961Meat Sci. 2016; 111: 9-17
- Combining Marandu grass grazing height and supplementation level to optimize growth and productivity of yearling bulls..https://doi.org/10.1016/j.anifeedsci.2015.09.010Anim. Feed Sci. Technol. 2015; 209: 110-118
- Influence of post-weaning management system during the finishing phase on grasslands or feedlot on aiming to improvement of the beef cattle production..https://doi.org/10.1016/j.agsy.2017.01.015Agric. Syst. 2017; 153: 23-31
Barthram, G. T. 1985. Experimental techniques: The HFRO sward stick. Pages 29–30 in Biennial Report, HFRO, Midlothian.
- Supplementation with different protein profiles for grazing beef cattle supplemented in tropical grass during the rainy-dry transition season..https://doi.org/10.1007/s11250-020-02467-433230661Trop. Anim. Health Prod. 2020; 53: 29
- Influence of subcutaneous fat thickness on the carcass characteristics and meat quality of beef cattle..https://doi.org/10.1590/0103-8478cr20170333Cienc. Rural. 2018; 48 (e-20170333)
- Evaluation of dry distillers’ grains plus solubles inclusion on performance and economics of finishing beef steers..https://doi.org/10.15232/S1080-7446(15)30884-6Prof. Anim. Sci. 2008; 24: 404-410
- Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands..https://doi.org/10.3390/su12166656Sustainability (Basel). 2020; 12: 6656
- Effects of supplementation strategies for beef cattle in tropical grassland conditions..https://doi.org/10.33448/rsd-v9i9.6384Res. Soc. Dev. 2020; 9 (e15996384)
- Predicting digestibility of different diets with internal markers: Evaluation of four potential markers..https://doi.org/10.2527/jas1986.6351476xJ. Anim. Sci. 1986; 63: 1476-1483
- Effects of replacing cottonseed meal with corn dried distillers’ grain on ruminal parameters, performance, and enteric methane emissions in young Nellore bulls reared in tropical pastures..https://doi.org/10.3390/ani1110295934679978Animals (Basel). 2021; 11: 2959
- Fat sources in diets for feedlot-finished steers—Carcass and meat characteristics..Cienc. Anim. Bras. 2011; 12: 487-496
- Sustainable intensification of livestock production on pastures..Arch. Latinoam. Prod. Anim. 2017; 25: 3-4
- Performance, nutrient use, and methanogenesis of Nellore cattle on a continuous grazing system of Urochloa brizantha and fed supplement types varying on protein and energy sources..https://doi.org/10.1016/j.livsci.2021.104716Livest. Sci. 2021; 253 (104716)
- Characterization and effects of DDG on the intake and digestibility of finishing bulls in feedlots..https://doi.org/10.4025/actascianimsci.v43i1.51877Acta Sci. Anim. Sci. 2020; 43 (e51877)
- Protein and energy utilization during compensatory growth in beef cattle..https://doi.org/10.2527/jas1972.342310xJ. Anim. Sci. 1972; 34: 310-318
- Predicting forage intake in extensive grazing systems..https://doi.org/10.2527/jas.2016-0523J. Anim. Sci. 2016; 94: 26-43
- The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle..https://doi.org/10.2527/2003.813676x12661648J. Anim. Sci. 2003; 81: 676-682
- The approximation of cattle diet through herbage sampling..Rangeland Ecol. Manag. 1954; 7: 269-270
- Does the effect of replacing cottonseed meal with dried distiller’s grains on Nellore bulls finishing phase vary between pasture and feedlot?.https://doi.org/10.3390/ani1101008533466432Animals (Basel). 2021; 11 (b): 85
- Effects of supplementation with corn distillers dried grains on animal performance, nitrogen balance, and enteric CH4 emissions of young Nellore bulls fed a high-tropical forage diet..https://doi.org/10.1016/j.animal.2020.10015533573951Animal. 2021; 15 (100155) (a)
- Animal variation in chromium sesquioxide excretion patterns of grazing cows..https://doi.org/10.2527/jas1978.4641096xJ. Anim. Sci. 1978; 46: 1096-1102
Köppen, W., and R. Geiger. 1928. Klimate der Erde [Climate of the Earth]. Verlag Justus Perthes. Wall map, 150 cm × 200 cm. Pages 91–102.
- How do animal performance and methane emissions vary with forage management intensification and supplementation?.https://doi.org/10.1071/AN18712Anim. Prod. Sci. 2020; 60: 1201-1209
Le Du, Y. L. P., and P. D. Penning. 1982. Animal based techniques for estimating herbage intake. Pages 37–75 in Herbage Intake Handbook. 1st ed. P. D. Penning, ed. The British Grassland Society.
- Different levels of dried distillers grains in diets fed to Bos indicus cattle in feedlot system..https://doi.org/10.1093/jas/sky404.955J. Anim. Sci. 2018; 96: 436-437
Mertens, D. R., and R. J. Grant. 2020. Digestibility and intake. Pages 609–631 in Forages: The Science of Grassland Agriculture, 2. 7th ed. K. J. Moore, M. Collins, C. J. Nelson, and D. D. Redfearn, ed. https://doi.org/10.1002/9781119436669.ch34.
Mott, G. O., and H. L. Lucas. 1952. The design conduct and interpretation of grazing trials on cultivated and improved pastures. Pages 1380–1395 in Proc. International Grassland Congress, 6, Pensylvania. Pensylvania State College.
NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Nutrient Requirements of Beef Cattle. 8th ed. National Academies Press. https://doi.org/10.17226/19014.
- Carcass characteristics and meat quality of bulls and steers slaughtered at two different ages..https://doi.org/10.1080/1828051X.2017.1383861Ital. J. Anim. Sci. 2018; 17: 279-288
- Assessment of in situ techniques to determine indigestible components in the feed and feces of cattle receiving supplemental condensed tannins..https://doi.org/10.1093/jas/skz32931630198J. Anim. Sci. 2019; 97: 5016-5026
Pecka-Kiełb E., A. Zachwieja, D. Miśta, W. Zawadzki, and A. Zielak-Steciwko. 2017. Use of corn dried distillers grains (DDGS) in feeding of ruminants. Frontiers in Bioenergy and Biofuels. E. Jacob-Lopes and L. Queiroz Zepka, ed. IntechOpen. https://doi.org/10.5772/66357.
Poppi, D. P., T. P. Hughes, and P. J. L’Huillier. 1987. Intake of pasture by grazing ruminants. Pages 55–64 in Livestock Feeding on Pasture. A. M. Nicol, ed. Occasional Publication no. 10, New Zealand Society of Animal Production.
- Challenges of beef cattle production from tropical pastures..https://doi.org/10.1590/rbz4720160419Rev. Bras. Zootec. 2018; 47: 1-9
- Performance of young Nelore bulls grazing marandu grass pasture at different heights..https://doi.org/10.17138/TGFT(1)114-115Trop. Grassl.-Forrajes Trop. 2013; 1: 114-115
- Does supplementation during previous phase influence performance during the growing and finishing phase in Nellore cattle?.https://doi.org/10.1016/j.livsci.2017.08.019Livest. Sci. 2017; 204: 122-128
- Compensatory growth in cattle and sheep..Nutr. Abstr. Rev. 1990; 60 (Series B): 653-664
- The nutritional interrelationship between the growing and finishing phases in crossbred cattle raised in a tropical system..https://doi.org/10.1007/s11250-017-1294-828447231Trop. Anim. Health Prod. 2017; 49: 1015-1024
- Canopy characteristics and tillering dynamics of Marandu palisade grass pastures in the rainy-dry transition season..https://doi.org/10.1111/gfs.12234Grass Forage Sci. 2017; 72: 261-270
- Evaluation of growth performance and carcass characteristics of beef stocker cattle grazing Tifton 85 bermudagrass supplemented with dried distillers grains with solubles then finished in the feedlot..https://doi.org/10.15232/aas.2019-01907Appl. Anim. Sci. 2020; 36: 308-319
- Effects of supplementation of dried distillers grains with solubles to beef steers grazing Coastal bermudagrass on performance on pasture and in feedlot, and carcass characteristics..https://doi.org/10.15232/aas.2020-02120Appl. Anim. Sci. 2021; 37: 155-165
- Impact of DDGS supplementation of cattle grazing bermudagrass on the plant-animal-environment nexus..https://doi.org/10.2527/ssasas2017.0127J. Anim. Sci. 2016; 95: 62-63
- Economic evaluation of finishing beef cattle on irrigated pasture..https://doi.org/10.1590/1678-4162-7340Braz. J. Vet. Res. Anim. Sci. 2015; 67: 1096-1104
Sollenberger, L. E., and D. J. R. Cherney. 1995. Evaluating forage production and quality. Pages 97–110 in The Science of Grassland Agriculture. 5th ed. R. F. Barnes, C.J. Nelson, D. Miller, ed. Iowa State University Press.
- ASAS-NANP Symposium: Mathematical modeling in animal nutrition: The progression of data analytics and artificial intelligence in support of sustainable development in animal science..10.1093/jas/skac111J. Anim. Sci. 2022; 100: 111
Tedeschi, L. O., and D. G. Fox. 2020a. The Ruminant Nutrition System: Volume I—An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants. 3rd ed. XanEdu.
Tedeschi, L. O., and D. G. Fox. 2020b. The Ruminant Nutrition System: Volume II—Tables of Equations and Coding. XanEdu.
- Effects of chemical composition variation on the dynamics of ruminal fermentation and biological value of corn milling (co)products..https://doi.org/10.3168/jds.2008-114119109298J. Dairy Sci. 2009; 92: 401-413
- The role of ruminant animals in sustainable livestock intensification programs..https://doi.org/10.1080/13504509.2015.1075441Int. J. Sustain. Dev. World Ecol. 2015; 22: 452-465
- https://doi.org/10.5935/978-85-8179-111-1.2016B002Date: 2016
- Evaluation of ruminal degradation profiles of forages using bags made from different textiles..https://doi.org/10.1590/S1516-35982011001100039Rev. Bras. Zootec. 2011; 40: 2565-2573
Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Cornell Univ.
- Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition..https://doi.org/10.3168/jds.S0022-0302(91)78551-21660498J. Dairy Sci. 1991; 74: 3583-3597
- Ingestive behavior of supplemented Nellore heifers grazing Palisadegrass pastures managed with different sward heights..https://doi.org/10.1111/asj.1269627612161Anim. Sci. J. 2017; 88: 696-704
- The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry..https://doi.org/10.1017/S002185960001546XJ. Agric. Sci. 1962; 59: 381-385
Article info
Publication history
Footnotes
The authors have not declared any conflicts of interest.