Legume proportion affects bahiagrass–rhizoma peanut mixture production and nutritive value and legume composition of cattle diets

      This paper is only available as a PDF. To read, Please Download here.



      Our objectives were to (1) quantify the effects of legume proportion on herbage accumulation (HA) and nutritive value of pasture mixtures compared with grass monocultures receiving typical or no N fertilizer application and (2) compare animal selection measures in legume–grass mixed pastures using microhistological and δ13C techniques applied to fecal samples.

      Materials and Methods

      We evaluated HA and nutritive value in 2 grazing systems: (1) mixtures of Florigraze rhizoma peanut (Arachis glabrata Benth.) and Pensacola bahiagrass (Paspalum notatum Flügge) (MIX-SYS; 6 to 78% legume, grazed to a 15-cm stubble height at 42-d grazing intervals and ~7-d residence periods) and (2) bahiagrass monocultures receiving no N or 50 kg of N/ha per year (BG-SYS and BGN-SYS, grazed to 10-cm stubble height at 21-d grazing intervals with ~7-d residence periods) over 2 yr. Animal [~220 kg, 12-mo-old Brahman (Bos indicus) × Angus (Bos taurus) heifers] diet selection in MIX-SYS was quantified using microhistological and δ13C techniques applied to fecal samples.

      Results and Discussion

      Herbage in vitro digestible OM (IVDOM) and CP concentrations increased linearly with increasing legume proportion in MIX-SYS up to ~45%, but MIX-SYS HA decreased linearly with increasing legume proportion. Treatment MIX-SYS had greater average HA [5,920 ± 271 (SE) kg/ha vs. 4,890 ± 236 kg/ ha for monocultures] and nutritive value than BG-SYS and BGN-SYS (CP of 12.9 ± 0.7% and IVDOM of 55.8 ± 1.0% for MIX-SYS vs. 9.1 ± 0.4% and 50.7 ± 1.5%, respectively, for monocultures). Results of microhistological and δ13C techniques applied to fecal samples were highly and positively correlated with sward canopy legume proportion, but fecal δ13C tracked legume proportion in the pasture more closely than the microhistological technique.

      Implications and Applications

      Benefits of legumes to HA and nutritive value were observed at low legume participation, but they did not increase proportionally as legume percentage increased above ~45%. These results support a conclusion that relatively small proportions of legumes have measurable positive effects on important grassland characteristics.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bauer M.O.
        • Gomide J.A.
        • da Silva E.A.M.
        • Regazzi A.J.
        • Chichorro J.F.
        Comparative analysis of identifiable fragments of forages, by the microhistological technique.
        R. Bras. Zootec. 2005; 34: 1841-1850
        • Bauer M.O.
        • Gomide J.A.
        • da Silva E.A.M.
        • Regazzi A.J.
        • Chichorro J.F.
        Microhistological analysis of the botanical composition of pre-established mixtures, submitted to the in vitro digestion process.
        R. Bras. Zootec. 2005; 34: 1851-1859
        • Beck P.
        • Hess T.
        • Hubbell D.
        • Gadberry M.S.
        • Jennings J.
        • Sims M.
        Replacing synthetic N with clovers or alfalfa in bermudagrass pastures. 2. Herbage nutritive value for growing beef steers.
        Anim. Prod. Sci. 2017; 57: 547-555
        • Bennett L.L.
        • Hammond A.C.
        • Williams M.J.
        • Chase C.C.
        • Kunkle W.E.
        Diet selection by steers using microhistological and stable carbon isotope ratio analyses.
        J. Anim. Sci. 1999; 77: 2252-2258
        • Boddey R.M.
        • Casagrande D.R.
        • Homem B.G.C.
        • Alves B.J.R.
        Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review.
        Grass Forage Sci. 2020; 75: 357-371
        • Braz S.P.
        • Urquiaga S.
        • Alves B.J.R.
        • Jantalia C.P.
        • Guimarães A.P.
        • dos Santos C.A.
        • dos Santos S.C.
        • Machado Pinheiro É.F.
        • Boddey R.M.
        Soil carbon stocks under productive and degraded pastures in Brazilian Cerrado.
        Soil Sci. Soc. Am. J. 2013; 77: 914-928
        • Burton G.W.
        • Gates R.N.
        • Gascho G.J.
        Response of Pensacola bahiagrass to rates of nitrogen, phosphorus, and potassium fertilizers.
        Proc. Soil Crop Sci. Soc. Fla. 1997; 56: 31-35
        • Carulla J.E.
        • Lascano C.E.
        • Ward J.K.
        Selectivity of resident and oesophageal fistulated steers grazing Arachis pintoi and Brachiaria dictyoneura in Llanos of Colombia.
        Trop. Grassl. 1991; 25: 317-324
        • Castillo M.S.
        • Sollenberger L.E.
        • Blount A.R.
        • Ferrell J.
        • Na C.I.
        • Williams M.J.
        • Mackowiak C.
        Seedbed preparation techniques and weed control strategies for strip-planting rhizoma peanut into warm-season grass pastures.
        Crop Sci. 2014; 54: 1868-1875
        • Coates D.B.
        • Van der Weide A.P.A.
        • Kerr J.D.
        Change in faecal δ13C in response to changing proportions of legume (C3) and grass (C4) in the diet of sheep and cattle.
        J. Agric. Sci. 1991; 116: 287-295
        • Davies I.
        The use of epidermal characteristics for the identification of grasses in the leafy stage.
        Grass Forage Sci. 1959; 14: 7-16
        • Duarte C.M.L.
        • Nascimento Jr., D.
        • Silva E.A.M.
        • Regazzi A.J.
        Métodos para estimar a composição botânica da dieta de herbívoros (Methods to estimate botanical composition in the diet of herbivores).
        Rev. Bras. Zootec. 1992; 21: 279-290
        • Dunavin L.S.
        ‘Florigraze’ rhizoma peanut in association with warm-season perennial grasses.
        Agron. J. 1992; 84: 148-151
        • Frame J.
        Davies A. Herbage mass. Pages 39–67 in Sward Measurement Handbook. British Grassl. Soc, 1981
        • Gallaher R.N.
        • Weldon C.
        • Futral J.
        An aluminum block digester for plant and soil analysis.
        Soil Sci. Soc. Am. J. 1975; 39: 803-806
        • Giuletti J.D.
        • Ateca N.S.
        • Funes M.O.
        • Furlán Z.
        Atlas epidérmico de gramíneas del pastizal natural de la provincia de San Luis, Argentina (Epidermic atlas of grasses from native grasslands from the province of San Luis, Argentina).
        Agriscientia. 1992; 9: 45-57
        • Hernandez M.
        • Argel P.J.
        • Ibrahim M.A.
        • Mannetje L.
        Pasture production, diet selection and liveweight gains of cattle grazing Brachiaria brizantha with or without Arachis pintoi at two stocking rates in the Atlantic Zone of Costa Rica.
        Trop. Grassl. 1995; 29: 134-141
        • Holechek J.L.
        Sample preparation techniques for microhistological analysis.
        J. Range Manage. 1982; 35: 267-268
        • Holechek J.L.
        • Gross B.D.
        Evaluation of different calculation procedures for microhistological analysis.
        J. Range Manage. 1982; 35: 721-723
        • Holechek J.L.
        • Vavra M.
        The effect of slide and frequency observation numbers on the precision of microhistological analysis.
        J. Range Manage. 1981; 34: 337-338
        • Holechek J.L.
        • Vavra M.
        • Pieper R.D.
        Botanical composition determination of range herbivore diets: A review.
        J. Range Manage. 1982; 35: 309-315
        • Inyang U.
        • Vendramini J.M.B.
        • Sollenberger L.E.
        • Sellers B.
        • Adesogan A.
        • Paiva L.
        • Lunpha A.
        Forage species and stocking rate effects on animal performance and herbage responses of “Mulato” and bahiagrass pastures.
        Crop Sci. 2010; 50: 1079-1085
        • Jaramillo D.M.
        • Dubeux Jr., J.C.B.
        • Mackowiak C.
        • Sollenberger L.E.
        • DiLorenzo N.
        • Rowland R.L.
        • Blount A.R.S.L.
        • Santos E.R.S.
        • Garcia L.
        • Ruiz-Moreno M.
        Annual and perennial peanut mixed with ‘Pensacola’ bahiagrass in North Florida.
        Crop Sci. 2018; 58: 982-992
        • Jaramillo D.M.
        • Dubeux Jr., J.C.B.
        • Sollenberger L.E.
        • Vendramini J.M.B.
        • Mackowiak C.
        • DiLorenzo N.
        • Garcia L.
        • Queiroz L.M.D.
        • Santos E.R.S.
        • Homem B.G.C.
        • van Cleef F.
        • Ruiz-Moreno M.
        Water footprint, herbage, and livestock responses for N-fertilized grass and grass-legume grazing systems.
        Crop Sci. 2021; 61: 3844-3858
        • Johansen D.A.
        Plant Microtechnique.
        McGraw-Hill Book Co. Inc, 1940
        • Jones R.J.
        • Ludlow M.M.
        • Troughton J.H.
        • Blunt C.G.
        Estimation of the proportion of C3 and C4 plant species in the diet of animals from the ratio of natural 12C and 13C isotopes in the faeces.
        J. Agric. Sci. 1979; 92: 91-100
        • Kohmann M.M.
        • Sollenberger L.E.
        • Dubeux Jr., J.C.B.
        • Silveira M.L.
        • Moreno L.S.B.
        • Silva L.S.
        • Aryal P.
        Nitrogen fertilization and proportion of legume affect litter decomposition and nutrient return in grass pasture.
        Crop Sci. 2018; 58: 2138-2148
        • Kohmann M.M.
        • Sollenberger L.E.
        • Dubeux Jr., J.C.B.
        • Silveira M.L.
        • Moreno L.S.B.
        Legume proportion in grassland litter affects decomposition dynamics and nutrient mineralization.
        Agron. J. 2019; 111: 1079-1089
        • Kraus J.E.
        • Arduin M.
        Manual Básico de Métodos em Morfologia Vegetal (Basic Manual of Methods in Morphology of Plants).
        EDUR. 1997;
        • Lenth R.V.
        Least squares means: The R package lsmeans.
        J. Stat. Softw. 2016; 69: 1-33
        • Lindström L.I.
        • Mújica M.B.
        • Bóo R.M.
        A key to iden- tify perennial grasses in central Argentina based on microhistological characteristics.
        Can. J. Bot. 1998; 76: 1467-1475
        • Macedo R.
        • Tarré R.M.
        • Ferreira E.
        • de Paula Rezende C.
        • Pereira J.M.
        • Cadisch G.
        • Rouwsm J.R.C.
        • Alvez B.J.R.
        • Urquiaga S.
        • Boddey R.M.
        Forage intake and botanical composition of feed for cattle fed Brachiaria/legume mixtures.
        Sci. Agric. 2010; 67: 384-392
        • Mandret G.
        Régime alimentaire des ruminants domestiques exploitant des parcours naturels sahéliens et soudano-sahéliens. III. Caractères épidemiques des principales espèces végétales consommées au pâturage: ‘constitution d ’ un atlas de référence en vue de l ’ étud (Diet of domestic ruminants grazing native Sahelian and Sudano- Sahelian rangelands. III. Epidermic characteristics of the main plant species consumed on pasture: Production of a reference atlas for the study).
        Rev. Élev. Méd. Vét. Pays Trop. 1989; 42: 237-243
        • Metcalfe C.R.
        Anatomy of the Monocotyledons.
        Clarendon, 1960
        • Moore J.E.
        • Mott G.O.
        Recovery of residual organic matter from in vitro digestion of forages.
        J. Dairy Sci. 1974; 57: 1258-1259
        • Muir J.P.
        • Pitman W.D.
        • Dubeux Jr., J.C.B.
        • Foster J.L.
        The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands.
        Afr. J. Range Forage Sci. 2014; 31: 187-198
        • Mullenix M.K.
        • Sollenberger L.E.
        • Wallau M.O.
        • Blount A.R.
        • Vendramini J.M.B.
        • Silveira M.L.
        Herbage accumulation, nutritive value, and persistence responses of rhizoma peanut cultivars and germplasm to grazing management.
        Crop Sci. 2016; 56: 907-915
        • Norman H.C.
        • Wilmot M.G.
        • Thomas D.T.
        • Masters D.G.
        • Revell D.K.
        Stable carbon isotopes accurately predict diet selection by sheep fed mixtures of C3 annual pastures and saltbush or C4 perennial grasses.
        Livest. Sci. 2009; 121: 162-172
        • Ortega- S.
        • J. A.
        • Sollenberger L.E.
        • Quesenberry K.H.
        • Jones Jr., C.S.
        • Cornell J.A.
        Productivity and persistence of rhizoma peanut pastures under different grazing managements.
        Agron. J. 1992; 84: 799-804
        • Pereira J.M.
        • Rezende C.P.
        • Ferreira Borges A.M.
        • Homem B.G.C.
        • Casagrande D.R.
        • Macedo T.M.
        • Alves B.J.R.
        • de Sant’Anna S.A. Cabral
        • Urquiaga S.
        • Boddey R.M.
        Production of beef cattle grazing on Brachiaria brizantha (Marandu grass)—Arachis pintoi (forage peanut cv. Belomonte) mixtures exceeded that on grass monocultures fertilised with 120 kg N/ha.
        Grass Forage Sci. 2020; 75: 28-36
        • Pinheiro J.
        • Bates D.
        • DebRoy S.
        • Sarkar D.
        nlme: Linear and Nonlinear Mixed Effects Models. R package version 3:1-127.
        R Found. Stat. Comp, 2016
        • R Core Team
        R: A Language and Environment for Statistical Computing.
        R Found. Stat. Comp, 2021
        • Scott G.
        • Dahl B.E.
        Key to selected plant species of Texas using plant fragments.
        Occasional Papers. 64. The Museum, Texas Tech Univ, 1980: 1-37
        • Shelton H.M.
        • Franzel S.
        • Peters M.
        Adoption of tropical legume technology around the world: Analysis of success.
        Trop. Grassl. 2005; 39: 198-209
        • Silveira M.L.
        • Obour A.K.
        • Arthington J.
        • Sollenberger L.E.
        The cow-calf industry and water quality in South Florida, USA: A review.
        Nutr. Cycl. Agroecosyst. 2011; 89: 439-452
        • Sollenberger L.E.
        Changing emphases in soil-plant-animal research in pastures.
        Pages 1–38 in Proc. 51st Braz. Soc. Anim. Sci, 2014
        • Sollenberger L.E.
        • Burns J.C.
        The conduct of grazing trials: Rationale, treatment selection, and basic measurements.
        Proc. 56th South. Pasture Forage Crop Improv. Conf. Agronomy Department. Mississippi State University, 2001: 25-30
        • Sollenberger L.E.
        • Collins M.
        Legumes for southern areas.
        in: Collins M. Nelson J. Moore K.J. Barnes R.F. Forages. 7th ed. An Introduction to Grassland Agriculture. Volume 1. John Wiley and Sons Publ, 2017: 133-149
        • Sollenberger L.E.
        • Templeton Jr., W.C.
        • Hill Jr., R.R.
        Orchardgrass and perennial ryegrass with applied nitrogen and in mixtures with legumes. II. Component contributions to dry matter and nitrogen harvests.
        Grass Forage Sci. 1984; 39: 263-270
        • Sollenberger L.E.
        • Kohmann M.M.
        • Dubeux Jr., J.C.B.
        • Silveira M.L.
        Grassland management affects delivery of regulating and supporting ecosystem services.
        Crop Sci. 2019; 59: 441-459
        • Stewart Jr., R.L.
        • Dubeux Jr., J.C.B.
        • Sollenberger L.E.
        • Vendramini J.M.B.
        • Interrante S.M.
        Stocking method affects plant responses of Pensacola bahiagrass pastures.
        Forage Grazing lands. 2005; 3: 1-9
        • Stewart Jr., R.L.
        • Sollenberger L.E.
        • Dubeux Jr., J.C.B.
        • Vendramini J.M.B.
        • Interrante S.M.
        • Newman Y.C.
        Herbage and animal responses to management intensity of continuously stocked bahiagrass pastures.
        Agron. J. 2007; 99: 107-112
        • Storr G.M.
        Microscopic analysis of faeces, a technique for ascertaining the diet of herbivorous mammals.
        Aust. J. Biol. Sci. 1961; 14: 157-164
        • Ta T.C.
        • Macdowall F.D.H.
        • Faris M.A.
        Excretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa).
        Can. J. Bot. 1986; 64: 2063-2067
        • Valencia E.
        • Williams M.J.
        • Chase Jr., C.C.
        • Sollenberger L.E.
        • Hammond A.C.
        • Kalmbacher R.S.
        • Kunkle W.E.
        Pasture management effects on diet composition and cattle performance on continuously stocked rhizoma peanut-mixed grass swards.
        J. Anim. Sci. 2001; 79: 2456-2464
        • Vendramini J.M.B.
        • Arthington J.D.
        • Adesogan A.T.
        Effects of incorporating cowpea in a subtropical grass pasture on forage production and quality and performance of cows and calves.
        Grass Forage Sci. 2012; 67: 129-135
        • Wallau M.O.
        • Vendramini J.M.B.
        • Dubeux Jr., J.C.B.
        • Blount A.
        Bahiagrass (Paspalum notatum): Overview and management.
        Publ. SSAGR-332. Coop. Ext. Serv., IFAS, Univ, Florida, Gainesville, FL2019 (Accessed Jul. 3, 2021)