Advertisement

Effects of select tannin-free grain sorghum varieties on the performance, carcass traits, intestinal morphology, and gene expression of jejunal mucosa of broiler chickens

      This paper is only available as a PDF. To read, Please Download here.

      ABSTRACT

      Objective

      The objective of this study was to evaluate the effects of tannin-free grain sorghum varieties on the performance, carcass traits, intestinal morphology, and gene expression of broiler chickens.

      Materials and Methods

      Cobb 500 × Hubbard male broilers (n = 640, 20 birds per pen, 8 pens per treatment) were fed diets based on corn, red/bronze, white/tan, or US No. 2 in crumble/pellet presentation fed in starter, grower, and finisher phases. Group BW and feed intake were recorded weekly. Mortality was recorded daily for the calculation of adjusted feed conversion ratio. At 41 d, two birds per pen were selected for the average pen weight for carcass yield and breast yield values. The intestinal morphology using histology and change in transcription using mRNA-seq was compared among birds fed corn and those fed grain sorghum (1 bird per pen). Pen was considered the experimental unit with model effects assessed with ANOVA and Fisher’s LSD procedure.

      Results and Discussion

      Birds fed the corn treatment had greater BW gain (P = 0.009; 3,622, 3,479, 3,518, and 3,483 g for corn, red/bronze, white/tan, and US No. 2 sorghum diets, respectively) at 41 d. Feed intake was greatest for birds fed corn and red/bronze diets (5,495 and 5,599 g, respectively) when compared with the white/tan diet (5,357 g), whereas US No. 2 sorghum-fed birds were intermediate (5,346 g; P = 0.005). Birds had improved adjusted feed conversion ratio in all treatments (P < 0.001; 1.52, 1.51, and 1.53 g:g for corn, white/tan, and US No. 2 sorghum diets, respectively) compared with red/bronze (1.60 g:g) at 41 d. No effects of grain sorghum treatments were observed on carcass traits and intestinal morphology. The mRNA-seq revealed 46 differentially expressed genes. Birds fed the corn-based diet performed better compared with those fed the tannin-free grain sorghum treatments. However, feeding certain grain sorghum varieties could result in similar feed efficiency to birds fed corn diets.

      Implications and Applications

      This study demonstrates that tannin-free grain sorghum can be a feasible alternative to corn depending on the variety used, cost, and availability. It may also have implications to improve gut health upon further investigation of its mode of action. Overall, results may allow nutritionists in the commercial poultry industry to consider grain sorghum as an alternative to corn.

      Key words

      LITERATURE CITED

        • Abdel-Moneim A.-M.E.
        • Shehata A.M.
        • Alzahrani S.O.
        • Shafi M.E.
        • Mesalam N.M.
        • Taha A.E.
        • Swelum A.A.
        • Arif M.
        • Fayyaz M.
        • Abd El-Hack M.E.
        The role of polyphenols in poultry nutrition.
        J. Anim. Physiol. Anim. Nutr. (Berl.). 2020; 104: 1851-1866https://doi.org/10.1111/jpn.13455
        • AgriStats
        AgriStats Monthly Live Production, July.
        Agri Stats Inc, 2022
        • Alshelmani M.I.
        • Abdalla E.A.
        • Kaka U.
        • Basit M.A.
        Nontraditional feedstuffs as an alternative in poultry feed. Pages 19– 20 in Advances in Poultry Nutrition Research.
        IntechOpen. 2021;
        • Al-Zoreky N.S.
        Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels.
        Int. J. Food Microbiol. 2009; 134: 244-248https://doi.org/10.1016/j.ijfoodmicro.2009.07.002
      1. Andrews, S. 2010. FASTQC. A quality control tool for high through- put sequence data. Accessed Mar. 2022. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

        • Ashley D.
        • Marasini D.
        • Brownmiller C.
        • Lee J.A.
        • Carbonero F.A.
        • Lee S.O.
        Impact of grain sorghum polyphenols on microbiota of normal weight and overweight/obese subjects during in vitro fecal fermentation.
        Nutrients. 2019; 11: 217https://doi.org/10.3390/nu11020217
        • Biloni A.
        • Quintana C.F.
        • Menconi A.
        • Kallapura G.
        • Latorre J.
        • Pixley C.
        • Layton S.
        • Dalmagro M.
        • Hernandez-Velasco X.
        • Wolfenden A.
        • Hargis B.M.
        • Tellez G.
        Evaluation of effects of early bird associated with FloraMax-B11 on Salmonella Enteritidis, intestinal morphology, and performance of broiler chickens.
        Poult. Sci. 2013; 92: 2337-2346https://doi.org/10.3382/ps.2013-03279
        • Bortoluzzi C.
        • Lumpkins B.
        • Mathis G.F.
        • França M.
        • King W.D.
        • Graugnard D.E.
        • Dawson K.A.
        • Applegate T.J.
        Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens.
        Poult. Sci. 2019; 98: 2211-2219https://doi.org/10.3382/ps/pey587
        • Bradbury E.J.
        • Wilkinson S.J.
        • Cronin G.M.
        • Thomson P.C.
        • Bedford M.R.
        • Cowieson A.J.
        Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skel- etal health and intake arrays.
        Animal. 2014; 8: 1071-1079https://doi.org/10.1017/S1751731114001037
        • Buck S.F.
        A method of estimation of missing values in multi- variate data suitable for use with an electronic computer.
        J. R. Stat. Soc. B. 1960; 22: 302-306https://doi.org/10.1111/j.2517-6161.1960.tb00375.x
        • Chen J.
        • Tellez G.
        • Richards J.D.
        • Escobar J.
        Identification of potential biomarkers for gut barrier failure in broiler chickens.
        Front. Vet. Sci. 2015; 2: 1-10https://doi.org/10.3389/fvets.2015.00014
        • Classen H.L.
        Diet energy and feed intake in chickens.
        Anim. Feed Sci. Technol. 2017; 233: 13-21https://doi.org/10.1016/j.anifeedsci.2016.03.004
        • Corzo A.
        • Schilling M.W.
        • Loar II, R.E.
        • Mejia L.
        • Barbosa L.C.G.S.
        • Kidd M.T.
        Responses of Cobb×Cobb 500 broilers to dietary amino acid density regimens.
        J. Appl. Poult. Res. 2010; 19: 227-236https://doi.org/10.3382/japr.2010-00172
        • Ewels P.
        • Magnusson M.
        • Lundin S.
        • Käller M.
        Multi- QC: Summarize analysis results for multiple tools and samples in a single report.
        Bioinformatics. 2016; 32: 3047-3048https://doi.org/10.1093/bioinformatics/btw354
        • Fagundes N.S.
        • Pereira R.
        • Bortoluzzi C.
        • Rafael J.M.
        • Napty G.S.
        • Barbosa J.G.M.
        • Sciencia M.C.M.
        • Menten J.F.M.
        Replacing corn with sorghum in the diet alters intestinal microbiota without altering chicken performance.
        J. Anim. Physiol. Anim. Nutr. (Berl.). 2017; 101: e371-e382https://doi.org/10.1111/jpn.12614
        • Ferket P.R.
        • Gernat A.G.
        Factors that affect feed intake of meat birds: A review.
        Int. J. Poult. Sci. 2006; 5: 905-911https://doi.org/10.3923/ijps.2006.905.911
        • Fraps G.S.
        Relation of the protein, fat, and energy of the ration to the composition of chickens.
        Poult. Sci. 1943; 22: 421-424https://doi.org/10.3382/ps.0220421
        • Garcia R.G.
        • Mendes A.A.
        • Almeida Paz I.C.L.
        • Komiyama C.M.
        • Caldara F.R.
        • Nääs I.A.
        • Mariano W.S.
        Implications of the use of sorghum in broiler production.
        Braz. J. Poult. Sci. 2013; 15: 257-262https://doi.org/10.1590/S1516-635X2013000300013
        • Gous R.M.
        • Faulkner A.S.
        • Swatson H.K.
        The effect of dietary energy: protein ratio, protein quality and food allocation on the efficiency of utilisation of protein by broiler chickens.
        Br. Poult. Sci. 2018; 59: 100-109https://doi.org/10.1080/00071668.2017.1390211
        • Gualtieri M.
        • Rapaccini S.
        Sorghum grain in poultry feeding.
        Worlds Poult. Sci. J. 1990; 46: 246-254https://doi.org/10.1079/WPS19900024
        • Harbertson J.F.
        • Picciotto E.A.
        • Adams D.O.
        Measurement of polymeric pigments in grape berry extracts and wines using a protein precipitation assay combined with bisulfite bleaching.
        Am. J. Enol. Vitic. 2003; 54: 301-306
        • He W.
        • Li P.
        • Wu G.
        Amino acid nutrition and metabolism in chickens.
        Pages 109–131 in Amino Acids in Nutrition and Health. Springer, 2021https://doi.org/10.1007/978-3-030-54462-1_7
        • Hulan H.W.
        • Proudfoot F.G.
        Nutritive value of sorghum grain for broiler chickens.
        Can. J. Anim. Sci. 1982; 62: 869-875https://doi.org/10.4141/cjas82-105
        • Jackson S.
        • Summers J.D.
        • Leeson S.
        Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization.
        Poult. Sci. 1982; 61: 2224-2231https://doi.org/10.3382/ps.0612224
        • Khoddami A.
        • Truong H.H.
        • Liu S.Y.
        • Roberts T.H.
        • Selle P.H.
        Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilisation in broiler chickens.
        Anim. Feed Sci. Technol. 2015; 210: 190-199https://doi.org/10.1016/j.anifeedsci.2015.09.029
        • Kidd M.T.
        • McDaniel C.D.
        • Branton S.L.
        • Miller E.R.
        • Boren B.B.
        • Fancher B.I.
        Increasing amino acid density improves live performance and carcass yields of commercial broilers.
        J. Appl. Poult. Res. 2004; 13: 593-604https://doi.org/10.1093/japr/13.4.593
        • Kim D.
        • Paggi J.M.
        • Park C.
        • Bennett C.
        • Salzberg S.L.
        Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
        Nat. Biotechnol. 2019; 37: 907-915https://doi.org/10.1038/s41587-019-0201-4
        • Kleyn R.
        Chicken Nutrition: A Guide for Nutritionists and Poultry Professionals. Context.
        2013
        • Leeson S.
        • Caston L.
        • Summers J.D.
        Broiler response to diet energy.
        Poult. Sci. 1996; 75: 529-535https://doi.org/10.3382/ps.0750529
        • Li T.
        • Xing G.
        • Shao Y.
        • Zhang L.
        • Li S.
        • Lu L.
        • Liu Z.
        • Liao X.
        • Luo X.
        Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers.
        Poult. Sci. 2020; 99: 3207-3214https://doi.org/10.1016/j.psj.2020.01.028
        • Liao Y.
        • Smyth G.K.
        • Shi W.
        FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features.
        Bioinformatics. 2014; 30: 923-930https://doi.org/10.1093/bioinformatics/btt656
        • Liu S.Y.
        • Truong H.H.
        • Khoddami A.
        • Moss A.F.
        • Thomson P.C.
        • Roberts P.H.
        • Selle P.H.
        Comparative performance of broiler chickens offered ten equivalent diets based on three grain sorghum varieties as determined by response surface mixture design.
        Anim. Feed Sci. Technol. 2016; 218: 70-83https://doi.org/10.1016/j.anifeedsci.2016.05.008
        • Meloche K.J.
        • Kerr B.J.
        • Billor N.
        • Shurson G.C.
        • Dozier III, W.A.
        Validation of prediction equations for apparent metabolizable energy of corn distillers dried grains with solubles in broiler chicks.
        Poult. Sci. 2014; 93: 1428-1439https://doi.org/10.3382/ps.2013-03712
        • Moritz A.H.
        • Krombeen S.K.
        • Presgraves B.
        • Blair M.E.
        • Buresh R.E.
        • Kaminski R.M.
        • Bridges W.C.
        • Arguelles-Ramos M.
        • Wilmoth T.A.
        Apparent metabolizable energy and performance of broilers fed selected grain sorghum varieties.
        Appl. Anim. Sci. 2022; 38: 268-278https://doi.org/10.15232/aas.2022-02271
        • Noy Y.
        • Sklan D.
        Metabolic responses to early nutrition.J.
        Appl. Poult. Res. 1998; 7: 437-451https://doi.org/10.1093/japr/7.4.437
        • Ollion J.
        • Cochennec J.
        • Loll F.
        • Escudé C.
        • Boudier T.
        TANGO: A generic tool for high-throughput 3D image analysis for studying nuclear organization.
        Bioinformatics. 2013; 29: 1840-1841https://doi.org/10.1093/bioinformatics/btt276
        • Oviedo-Rondón E.O.
        Holistic view of intestinal health in poultry.
        Anim. Feed Sci. Technol. 2019; 250: 1-8https://doi.org/10.1016/j.anifeedsci.2019.01.009
        • Prasad A.S.
        • Bao B.
        • Beck F.W.
        • Sarkar F.H.
        Zinc- suppressed inflammatory cytokines by induction of A20-mediated in- hibition of nuclear factor-κB.
        Nutrition. 2011; 27: 816-823https://doi.org/10.1016/j.nut.2010.08.010
        • Raudvere U.
        • Kolberg L.
        • Kuzmin I.
        • Arak T.
        • Adler P.
        • Peterson H.
        • Vilo J.
        g:Profiler: a web server for functional en- richment analysis and conversions of gene lists.
        Nucleic Acids Res. 2019; 47 (Accessed 13March2022): W191-W198https://doi.org/10.1093/nar/gkz369
        • Robinson M.D.
        • McCarthy D.J.
        • Smyth G.K.
        EdgeR: A bioconductor package for differential expression analysis of digital gene expression data.
        Bioinformatics. 2010; 26: 139-140https://doi.org/10.1093/bioinformatics/btp616
        • Rokyta D.R.
        • Lemmon A.R.
        • Margres M.J.
        • Aronow K.
        The venom-gland transcriptome of the eastern diamondback rattle- snake (Crotalus adamanteus).
        BMC Genomics. 2012; 13: 1-23https://doi.org/10.1186/1471-2164-13-312
        • Scott T.A.
        • Silversides F.G.
        • Classen H.L.
        • Swift M.L.
        • Bedford M.R.
        • Hall J.W.
        A broiler chick bioassay for measuring the feeding value of wheat and barley in complete diets.
        Poult. Sci. 1998; 77: 449-455https://doi.org/10.1093/ps/77.3.449
        • Shen S.
        • Huang R.
        • Li C.
        • Wu W.
        • Chen H.
        • Shi J.
        • Chen S.
        • Ye X.
        Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications.
        Molecules. 2018; 23: 1203https://doi.org/10.3390/molecules23051203
        • Shields L.
        • Gang Y.
        • Jordan K.
        • Sapkota S.
        • Boatwright L.
        • Jiang X.
        • Kresovich S.
        • Boyles R.
        Genome-wide association studies of antimicrobial activity in global sorghum.
        Crop Sci. 2021; 61: 1301-1316https://doi.org/10.1002/csc2.20348
        • Sibbald I.R.
        Metabolizable energy in poultry nutrition.
        Bioscience. 1980; 30: 736-741https://doi.org/10.2307/1308333
        • Smith E.R.
        • Pesti G.M.
        Influence of broiler strain cross and dietary protein on the performance of broilers.
        Poult. Sci. 1998; 77: 276-281https://doi.org/10.1093/ps/77.2.276
        • Song X.
        • Jiao H.
        • Zhao J.
        • Wang X.
        • Lin H.
        Ghrelin serves as a signal of energy utilization and is involved in maintaining energy homeostasis in broilers.
        Gen. Comp. Endocrinol. 2019; 272: 76-82https://doi.org/10.1016/j.ygcen.2018.11.017
        • Torres K.A.A.
        • Pizauro Jr., J.M.
        • Soares C.P.
        • Silva T.G.A.
        • Nogueira W.C.L.
        • Campos D.M.B.
        • Furlan R.L.
        • Macari M.
        Effects of corn replacement by sorghum in broiler diets on per- formance and intestinal mucosa integrity.
        Poult. Sci. 2013; 92: 1564-1571https://doi.org/10.3382/ps.2012-02422
        • Troche C.
        • Eicher S.D.
        • Applegate T.J.
        The influence of dietary zinc source and coccidial vaccine exposure on intracellular zinc homeostasis and immune status in broiler chickens.
        Br. J. Nutr. 2015; 114: 202-212https://doi.org/10.1017/S0007114515001592
        • Valable A.S.
        • Narcy A.
        • Duclos M.J.
        • Pomar C.
        • Page G.
        • Nasir Z.
        • Magnin M.
        • Létourneau-Montminy M.P.
        Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics.
        Animal. 2018; 12: 1555-1563https://doi.org/10.1017/S1751731117003093
        • Venäläinen E.
        • Valaja J.
        • Jalava T.
        Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens.
        Br. Poult. Sci. 2006; 47: 301-310https://doi.org/10.1080/00071660600741776
        • Wu G.
        Amino acids: Biochemistry and Nutrition.
        CRC Press, 2013
        • Wu S.B.
        • Choct M.
        • Pesti G.
        Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: A critical review.
        Poult. Sci. 2020; 99: 385-406https://doi.org/10.3382/ps/pez511
        • Yan F.
        • Angel R.
        • Ashwell C.
        • Mitchell A.
        • Christman M.
        Evaluation of the broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium.
        Poult. Sci. 2005; 84: 1232-1241https://doi.org/10.1093/ps/84.8.1232
        • Yu G.
        • Wang L.G.
        • Han Y.
        • He Q.Y.
        clusterProfiler: An R package for comparing biological themes among gene clusters.
        OMICS. 2012; 16: 284-287https://doi.org/10.1089/omi.2011.0118