Advertisement

Implied climate warming contributions of enteric methane emissions are dependent on the estimate source and accounting methodology

  • M.R. Beck
    Correspondence
    Corresponding author.
    Affiliations
    Conservation and Production Research Laboratory, Livestock Nutrient Management Research Unit, USDA-ARS, Bushland, TX 79012
    Search for articles by this author
  • L.R. Thompson
    Affiliations
    Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
    Search for articles by this author
  • T.N. Campbell
    Affiliations
    Conservation and Production Research Laboratory, Livestock Nutrient Management Research Unit, USDA-ARS, Bushland, TX 79012
    Search for articles by this author
  • K.A. Stackhouse-Lawson
    Affiliations
    CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins 80523
    Search for articles by this author
  • S.L. Archibeque
    Affiliations
    CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins 80523
    Search for articles by this author
  • Author Footnotes
    * Mention of trade names or commercial products in this article is solely for providing specific information and does not imply recommendation or endorsement by the USDA. The USDA prohibits discrimination in all its programs and activities based on race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program.
      This paper is only available as a PDF. To read, Please Download here.

      ABSTRACT

      Objective

      The objective of this project was to dem- onstrate differences in methane (CH4) emission estimates between 2 reporting entities and to illustrate how the con- tribution to climate warming of enteric CH4 emissions is dependent on accounting methodologies.

      Materials and Methods

      United States enteric CH4 emissions were accessed from the Food and Agriculture Organization (FAO) and US Environmental Protection Agency (EPA), and cattle inventory numbers were ob- tained from the USDA-National Agricultural Statistics Service (NASS) website and EPA spreadsheet. Enteric CH4 emission estimates from both sources were then ex- pressed as CO2 equivalence (CO2-e) and warming equiva- lence (CO2-we) using both the 100-yr global warming potential (GWP100) and the newer global warming po- tential* (GWP*) methodologies.

      Results and Discussion

      Almost all of the year-to- year variability in the FAO data set was explained by NASS cow and calves inventory (R2 = 0.99), whereas much less variability was explained by EPA cattle inven- tory for the EPA data set (R2 = 0.45). The EPA estimates were consistently greater than FAO estimates, and only a small amount of variation was accounted for (R2 = 0.41). Despite these differences, GWP* methodologies produced much smaller CO2-e values compared with GWP100 for both data sets.

      Implications and Applications

      This work highlight- ed several important concepts to understand. First, it is important to understand the methodology for estimating enteric CH4 emissions used by different reporting bodies. Second, with both the FAO and EPA data sources, GWP* methodology provides a smaller estimate of warming con- tribution than the GWP100 method. Finally, this evalu- ation also highlights how this greenhouse gas accounting method is not a panacea for this source of greenhouse gas emissions.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      LITERATURE CITED

        • Allen M.R.
        • Shine K.P.
        • Fuglestvedt J.S.
        • Millar R.J.
        • Cain M.
        • Frame D.J.
        • Macey A.H.
        A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation.
        npj Clim. Atmos. Sci. 2018; 1: 1-8https://doi.org/10.1038/s41612-018-0026-8
        • Allen M.R.
        • Peters G.P.
        • Shine K.P.
        • Azar C.
        • Balcombe P.
        • Boucher O.
        • Cain M.
        • Ciais P.
        • Collins W.
        • Forster P.M.
        • Frame D.J.
        • Friedlingstein P.
        • Fyson C.
        • Gasser T.
        • Hare B.
        • Jenkins S.
        • Hamburg S.P.
        • Johansson D.J.A.
        • Lynch J.
        • Macey A.
        • Morfeldt J.
        • Nauels A.
        • Ocko I.
        • Oppenheimer M.
        • Pacala S.W.
        • Pierrehumbert R.
        • Rogelj J.
        • Schaeffer M.
        • Schleussner C.F.
        • Shindell D.
        • Skeie R.B.
        • Smith S.M.
        • Tanaka K.
        Comment: Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets.
        npj Clim. Atmos. Sci. 2022; 5: 5https://doi.org/10.1038/s41612-021-00226-2
        • Cain M.
        • Lynch J.
        • Allen M.R.
        • Fuglestvedt J.S.
        • Frame D.J.
        • Macey A.H.
        Improved calculation of warming-equivalent emis- sions for short-lived climate pollutants.
        npj Clim. Atmos. Sci. 2019; 2: 29https://doi.org/10.1038/s41612-019-0086-4
        • Cain M.
        • Jenkins S.
        • Allen M.R.
        • Lynch J.
        • Frame D.J.
        • Macey A.H.
        • Peters G.P.
        Methane and the Paris Agreement temperature goals.
        Philos. Trans. Royal Soc. A, Math. Phys. Eng. Sci. 2021; 380: 20200456https://doi.org/10.1098/rsta.2020.0456
        • FAO (Food and Agriculture Organization)
        Environmental Per- formance of Large Ruminant Supply Chains: Guidelines for Assess- ment.
        Livestock Environmental Assessment and Performance Partner- ships, Food and Agriculture Organization2016
        • FAO (Food and Agriculture Organization)
        FAOSTAT Emis- sions Totals.
        (Accessed: May 18, 2022.)
        • Hales K.E.
        • Cole N.A.
        • MacDonald J.C.
        Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon-nitrogen balance, and methane emissions of cattle.
        J. Anim. Sci. 2012; 90: 3174-3185https://doi.org/10.2527/jas.2011-4441
        • Hristov A.N.
        • Harper M.
        • Meinen R.
        • Day R.
        • Lopes J.
        • Ott T.
        • Venkatesh A.
        • Randles C.A.
        Discrepancies and uncertainties in bottom-up gridded inventories of livestock methane emissions for the contiguous United States.
        Environ. Sci. Technol. 2017; 51: 13668-13677https://doi.org/10.1021/acs.est.7b03332
        • Hristov A.N.
        • Kebreab E.
        • Niu M.
        • Oh J.
        • Bannink A.
        • Bayat A.R.
        • Boland T.M.
        • Brito A.F.
        • Casper D.P.
        • Crompton L.A.
        • Dijkstra J.
        • Eugene M.
        • Garnsworthy P.C.
        • Haque N.
        • Hellwing A.L.F.
        • Huhtanen P.
        • Kreuzer M.
        • Kuhla B.
        • Lund P.
        • Madsen J.
        • Martin C.
        • Moate P.J.
        • Muetzel S.
        • Munoz C.
        • Peiren N.
        • Powell J.M.
        • Reynolds C.K.
        • Schwarm A.
        • Shingfield K.J.
        • Storlien T.M.
        • Weisbjerg M.R.
        • Yanez-Ruiz D.R.
        • Yu Z.
        Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and predic- tion models.
        J. Dairy Sci. 2018; 101: 6655-6674https://doi.org/10.3168/jds.2017-13536
        • IPCC (Intergovernmental Panel on Climate Change)
        Houghton J.T. Jenkins G.J. Ephraums J.J. Climate Change: The IPCC Assessment. Cambridge University Press, 1990
        • IPCC (Intergovernmental Panel on Climate Change)
        Stocker T.F. Qin D. Plattner G.K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. Midgley P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013
        • IPCC (Intergovernmental Panel on Climate Change)
        2019 Re- finement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
        in: Buendia E. Calvo Tanabe K. Kranjc A. Baasansuren J. Fukuda M. Ngarize S. Osako A. Pyrozhenko Y. Shermanau P. Federici S. Intergovernmental Panel on Climate Change. 2019
        • IPCC (Intergovernmental Panel on Climate Change)
        Climate Change 2021: The Physical Science Basis.
        in: Masson-Delmotte V. Zhai P. Pirani A. Connors S.L. Péan C. Berger S. Caud N. Chen Y. Goldfarb L. Gomis M.I. Huang M. Leitzell K. Lonnoy E. Matthews J.B.R. Maycock T.K. Waterfield T. Yelekçi O. Yu R. Zhou B. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021https://doi.org/10.1017/9781009157896
        • Liu S.
        • Proudman J.
        • Mitloehner F.
        Rethinking methane from animal agriculture.
        CABI Agric. Biosci. 2021; 2: 22https://doi.org/10.1186/s43170-021-00041-y
        • Lynch J.
        • Cain M.
        • Pierrehumbert R.
        • Allen M.
        Demon- strating GWP: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants.
        Environ. Res. Lett. 2020; 15044023https://doi.org/10.1088/1748-9326/ab6d7e
        • NCBA (National Cattlemen’s Beef Association)
        Commitment to Building a Sustainable Legacy.
        (Accessed May 1, 2022.)
        • O’Neill B.C.
        The jury is still out on global warming potentials.
        Clim. Change. 2000; 44: 427-443https://doi.org/10.1023/A:1005582929198
        • R Core Team
        R: A Language and Environment for Statistical Computing. R Foundation for Statistical.
        Computing. 2021; 10
        • Romero-Perez A.
        • Okine E.K.
        • McGinn S.M.
        • Guan L.L.
        • Oba M.
        • Duval S.M.
        • Kindermann M.
        • Beauchemin K.A.
        Sustained reduction in methane production from long-term addition of 3-nitro- oxypropanol to a beef cattle diet.
        J. Anim. Sci. 2015; 93: 1780-1791https://doi.org/10.2527/jas.2014-8726
        • Shine K.P.
        The global warming potential—The need for an interdisciplinary retrial: An editorial comment.
        Clim. Change. 2009; 96: 467-472https://doi.org/10.1007/s10584-009-9647-6
        • Shine K.P.
        • Fuglestvedt J.S.
        • Hailemariam K.
        • Stuber N.
        Alternatives to the Global Warming Potential for comparing impacts of emissions of greenhouse gases.
        Clim. Change. 2005; 68: 281-302https://doi.org/10.1007/s10584-005-1146-9
        • Smith M.A.
        • Cain M.
        • Allen M.R.
        Further improvement of warming-equivalent emissions calculation. npj Clim.
        Atmos. Sci. 2021; 4: 1-3https://doi.org/10.1038/s41612-021-00169-8
        • Steinfeld H.
        • Gerber P.
        • Wassenaar T.
        • Castel V.
        • Rosales M.
        • de Haan C.
        Livestock’s Long Shadow—Environmental Issues and Options.
        Food and Agriculture Organization, 2006
        • US EPA (US Environmental Protection Agency)
        Inventory of US Greenhouse Gas Emissions and Sinks 1990–2019.
        US Environmental Protection Agency, 2021
        • US EPA (US Environmental Protection Agency)
        Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2019.
        • USDA-NASS (National Agricultural Statistics Service)
        Cattle NASS.
        • van Lingen H.J.
        • Niu M.
        • Kebreab E.
        • Valadares Filho S.C.
        • Rooke J.A.
        • Duthie C.A.
        • Schwarm A.
        • Kreuzer M.
        • Hynd P.I.
        • Caetano M.
        • Eugène M.
        • Martin C.
        • McGee M.
        • O’Kiely P.
        • Hünerberg M.
        • McAllister T.A.
        • Berchielli T.T.
        • Messana J.D.
        • Peiren N.
        • Chaves A.V.
        • Charmley E.
        • Cole N.A.
        • Hales K.E.
        • Lee S.-S.
        • Berndt A.
        • Reynolds C.K.
        • Crompton L.A.
        • Bayat A.-R.
        • Yáñez-Ruiz D.R.
        • Yu Z.
        • Bannink A.
        • Dijkstra J.
        • Casper D.P.
        • Hristov A.N.
        Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database.
        Agric. Ecosyst. Environ. 2019; 283106575https://doi.org/10.1016/j.agee.2019.106575
        • Wickham H.
        ggplot2: Elegant Graphics for Data Analysis.
        Springer-Verlag, 2016