Integrated cattle grazing systems can conserve critical resources without impacting economic viability

In a new perspectives and commentary from Applied Animal Science researchers outline how one Kansas farm has used integrated grazing to conserve water and reduce fertilizer use, all while still supporting profitable beef production

Champaign, IL, April 1, 2024— A new study published in Applied Animal Science details how Thunderstruck Farms, a Kansas agricultural operation, has significantly reduced its water usage by converting irrigated cropland to an integrated cattle grazing system. This innovative approach demonstrates the potential for agricultural businesses to thrive while also conserving critical resources and boosting sustainability.

“Water conservation is crucial for long-term sustainability of agriculture in much of the western United States,” said David K. Beede, PhD, editor in chief of Applied Animal Science. “This article describes an example of conversion of cropped farmland to an integrated cattle grazing operation and the associated changes in farming practices and cattle needs, and the dramatic change in water use. Water intake of cattle in backgrounding and feedlot phases also were quantified. The grazing system provided the opportunity to produce economically viable beef while reducing overall water use and fertilizer inputs. The potential to extend groundwater supply, conserving water to sustain rural communities, is discussed.”

Thunderstruck Farms, located near Garden City, Kansas, began participating in a water conservation area program in 2018, to aid in extending the usable lifetime of the Ogallala Aquifer—which is currently the largest area of groundwater withdrawal in the United States. Part of this program involved transitioning to an integrated beef cattle grazing system.

Previously, Thunderstruck Farms would have used irrigated crop land for growing corn for grain, but now all crops grown are used for silage, hay, or pasture to support their local dairy and feedlot enterprises. Light-weight beef cattle grazed these irrigated pastures for approximately 120 days before entering the finishing phase.
By transitioning from growing corn for grain to raising cattle on irrigated pastures, the farm used 50.9 billion liters (13.4 billion gallons) less water than allocated, with 57.8% of the savings occurring during the five-year period of the water conservation area program. They were also able to reduce nitrogen fertilizer use by 39% per year and improve their soil fertility, all while still producing a viable amount of beef.

Caption: Integrated grazing systems hold promise for the future of agriculture in the Ogallala Aquifer region and beyond (Credit: Gina Gigot).

“Our research shows that integrated grazing systems can be a win-win for both beef producers and the environment,” said Miles E. Theurer, PhD, of Veterinary Research and Consulting Services LLC, Hays, Kansas, USA, and lead author of the study. “By reducing water use and fertilizer application, these systems can help to ensure the long-term sustainability of agriculture in the Ogallala Aquifer region, make more water available for the surrounding area, and allow for a thriving agriculture economy.”

The study also found that cattle grazing irrigated pastures consumed an average of 17.94 liters (4.74 gallons) of drinking water per head per day. These data are essential for understanding the total water footprint of integrated grazing systems.

The findings of this study offer valuable insights for agricultural producers seeking to reduce their environmental impact while maintaining economic viability. Integrated grazing systems hold promise for the future of agriculture in the Ogallala Aquifer region and beyond.

The article appears in the April issue of Applied Animal Science.

Notes for editors

This article is openly available at https://doi.org/10.15232/aas.2023-02506.
To schedule an interview with the author(s), please contact Miles E. Theurer at miles@vrcsllc.com.

About Applied Animal Science

Applied Animal Science (AAS) is a gold open access, peer-reviewed scientific journal and the official publication of the American Registry of Professional Animal Scientists (ARPAS). In continuous publication since 1985, AAS is a leading outlet for animal science research and is indexed by Scopus and ESCI (Clarivate’s Emerging Sources Citation Index). The journal welcomes novel manuscripts on applied technology, reviews on the use or application of research-based information on animal agriculture, commentaries on contemporary issues, short communications, and technical notes. Topics that will be considered for publication include (but are not limited to) feed science, farm animal management and production, dairy science, meat science, animal nutrition, reproduction, animal physiology and behavior, disease control and prevention, microbiology, agricultural economics, and environmental issues related to agriculture. Themed special issues also will be considered for publication. www.appliedanimalscience.org

About the American Registry of Professional Animal Scientists (ARPAS)

The American Registry of Professional Animal Scientists (ARPAS) is the organization that provides certification of animal scientists through examination, continuing education, and commitment to a code of ethics. Continual improvement of individual members is catalyzed through publications (including the AAS journal) and by providing information on educational opportunities. ARPAS is affiliated with five professional societies: American Dairy Science Association, American Meat Science Association, American Society of Animal Science, Equine Science Society, and Poultry Science Association. www.arpas.org

About FASS

FASS, the services division of the American Dairy Science Association, provides management services to nonprofit associations and societies with a mutual interest in supporting the advancement of animal agriculture and food systems through research and education. We support nonprofits by providing services for accounting, membership management, convention and meeting planning, information technology, and scientific publishing. The FASS publications department provides journal management, peer-review support, copyediting, composition, and proofreading; the staff includes several BELS-certified (www.bels.org) technical editors and experienced composition staff. www.fass.org

About Elsevier

As a global leader in information and analytics, Elsevier helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. We do this by facilitating insights and critical decision-making for customers across the global research and health ecosystems.

In everything we publish, we uphold the highest standards of quality and integrity. We bring that same rigor to our information analytics solutions for researchers, health professionals, institutions and funders.

Elsevier employs 8,700 people worldwide. We have supported the work of our research and health partners for more than 140 years. Growing from our roots in publishing, we offer knowledge and valuable analytics that help our users make breakthroughs and drive societal progress. Digital solutions such as ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath support strategic research management, R&D performance, clinical decision support, and health education. Researchers and healthcare professionals rely on over 2,800 digitized journals, including *The Lancet* and *Cell*; our 46,000+ eBook titles; and our iconic reference works, such as *Gray’s Anatomy*. With the Elsevier Foundation and our external Inclusion & Diversity Advisory Board, we work in partnership with diverse stakeholders to advance inclusion and diversity in science, research and healthcare in developing countries and around the world.
Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers. www.elsevier.com